
December 14, 2021

By Insikt Group®

MALWARE/
TOOLS
PROFILE

Full Spectrum Detections
for 5 Popular Web Shells:
Alfa, SharPyShell, Krypton,
ASPXSpy, and TWOFACE

Recorded Future® | www.recordedfuture.com MTP-2021-12141

This report provides a technical overview of 5 prominent web shells:
Alfa, Krypton, SharPyShell, ASPXSpy, and TWOFACE. It contains details
on the capabilities of the web shells and host-based and network-based
detections. This report is intended for security operations audiences who
focus on detection engineering. Sources include the Recorded Future
Platform®, GreyNoise, Shodan, and BinaryEdge.

Executive Summary
Web shells are common and powerful tools used by

threat actors to maintain access to public-facing web
servers. They are lightweight, sometimes containing as
few as 4 lines of code, and let threat actors execute
secondary payloads, escalate privileges, exfiltrate data,
and move laterally within the compromised network.
Web shells often go undetected due to the small
footprint left during their use, an organization’s limited
visibility of their public-facing servers, and the ability
for web shell-associated network traffic to blend in with
normal web server activity. Our research provides a full-
spectrum approach to detecting web shells, combining
log analysis, network analysis, and web shell scanning
techniques. We focus on a subset of web shells recently
used by state-sponsored and criminal threat actors:
Alfa, SharPyShell, Krypton, ASPXSpy, and TWOFACE. Our
methodology and detections can be applied internally for
defenders but also by security researchers hunting for
the presence of web shells on externally facing servers.

Key Judgments
• Web shells will continue to be used by both APTs and
financially motivated threat actors, primarily due to their
ease of use and their difficulty in being detected.

• We identified 4 techniques to detect web shells that
can be used together: YARA rules, Sigma rules, network
traffic patterns, and internal/external scanning. While
these methods are not foolproof, they provide diverse
opportunities for defenders to look for web shells on
their systems.

• Security teams with limited host and network visibility
can still detect web shells on their systems using HTTP
scanning techniques.

• As long as threat actors can viably exploit public-facing
servers, they will continue to use web shells to maintain
persistence and provide additional capabilities.

Background
Web shells are pieces of malicious code planted by a threat

actor on a web server that allow the threat actor to execute
commands or access files on the remote server. They are most
often written for PHP or Active Server Pages (ASP) as these are
currently the most common website programming languages.
Web shells can be employed for various purposes, including
gaining persistence, executing commands, downloading files,
or dropping another tool for a subsequent stage of an attack.

A common scenario in which web shells are deployed is that
a threat actor, either opportunistically or in a targeted intrusion,
will exploit a vulnerability in a public-facing application or
server. Depending on the exploit, an attacker may have limited
privileges to the system; additionally, if the attacker’s connection
terminates, they will have to rerun the exploit to gain access.
Deploying a web shell provides an attacker with a persistent
connection and additional capabilities. The graphic below from
the Microsoft Threat Intelligence Center shows a high-level
overview of this approach.

MALWARE/TOOL PROFILE

http://www.recordedfuture.com
https://w3techs.com/technologies/history_overview/programming_language/ms/y

www.recordedfuture.com | Recorded Future® MTP-2021-1214 2

Over the last year, we have observed several cyberattacks
in which web shells were used:

• HAFNIUM, the Chinese APT group, uploaded the China
Chopper web shell to compromised Microsoft IIS servers
earlier this year. China Chopper allows threat actors
to execute JScript code on the victim machine, in turn
allowing them to access files, execute processes, or
create a reverse shell.

• The compromise of the Accellion File Transfer Appliance
(FTA) file-sharing service affecting nearly 100 clients was
primarily enabled by 4 zero-day vulnerabilities in the tool.
Those vulnerabilities allowed threat actors to place the
DEWMODE web shell on victim servers and exfiltrate files
from those servers. DEWMODE enabled the threat actor
to view or download files of interest.

• The SUPERNOVA web shell was deployed to servers
vulnerable to CVE-2020-10148 in late 2020 by threat
actors linked to the Spiral threat group. The Spiral
threat group is suspected to be of Chinese origin. In
the incident, a compromised SolarWinds server was
used to deploy the web shell. The use of SUPERNOVA
was unrelated to the SUNBURST supply chain attack
that was discovered in December 2020. While both use
SolarWinds Orion components, SUPERNOVA leverages
a vulnerability and is not digitally signed. Those two
factors differentiate SUPERNOVA from SUNBURST.

Threat Analysis
For this research, Insikt Group selected 5 web shells to create

detections for: AlfaShell, KRYPTON, SharPyShell, ASPXSPY, and
TWOFACE. We chose these web shells for their popularity and
use among state-sponsored and criminal threat actors.

Alfa Team Shell

AlfaShell (Alfa Team Shell) has been publicly available since
at least 2013, notably appearing on the Persian-language forums
Ashiyane and Iranian Dark Coders Team Forum. APT33 has been
a prominent user of AlfaShell. Version 4.1 of the tool (dubbed
Tesla) is available on GitHub and includes extensive functionality.
The tool has a very verbose user interface, making it easy for less
experienced operators to use on compromised servers. AlfaShell
initially gathers a large amount of data to provide information
about the victim host to the user.

Figure 1: Common web shell Installation (Source: Microsoft)

MALWARE/TOOL PROFILE

http://www.recordedfuture.com
https://threatpost.com/microsoft-exchange-cyberattacks-one-click-fix/164817/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/hafnium-china-chopper-and-aspnet-runtime/
https://www.recordedfuture.com/dewmode-accellion-supply-chain-impact/
https://app.recordedfuture.com/live/sc/4bVMAttziHQC
https://www.zdnet.com/article/supernova-malware-clues-link-chinese-threat-group-spiral-to-solarwinds-hacks/
https://app.recordedfuture.com/live/sc/4WiKjGuto6Cx
https://www.zdnet.com/article/a-second-hacking-group-has-targeted-solarwinds-systems/
https://www.zdnet.com/article/a-second-hacking-group-has-targeted-solarwinds-systems/
https://www.fireeye.com/blog/threat-research/2017/09/apt33-insights-into-iranian-cyber-espionage.html
https://blog.sucuri.net/2020/11/alfa-team-shell-v4-1-tesla-a-feature-update-analysis.html
https://blog.sucuri.net/2020/11/alfa-team-shell-v4-1-tesla-a-feature-update-analysis.html
https://urlscan.io/screenshots/4804261f-01a2-4664-a5e9-f8e2166f4635.png
https://techcommunity.microsoft.com/t5/azure-sentinel/web-shell-threat-hunting-with-azure-sentinel-and-microsoft/ba-p/1448065

Recorded Future® | www.recordedfuture.com MTP-2021-12143

AlfaShell can upload and download files, as well as execute
commands. The tool also includes more advanced features,
such as pre-built tooling to send spearphishing emails, deface a
victim’s domains, implement a fake web page, dump databases,
upload a backdoor, and inject a web shell elsewhere on the host.
However, the advanced features come at a cost, inflating the
web shell’s file size to over 150 KB.

SharPyShell

SharPyShell is an open-source ASP.NET web shell that
only supports C# applications running on .NET Framework
>=2.0. SharPyShell executes commands by compiling them in-
memory at runtime. SharPyShell receives encrypted commands,
decrypts them, runs the commands, and returns the response.
Commands are sent from the SharPyShell Python client and
include downloading files, executing shell commands via cmd.
exe, running PowerShell scripts, escalating privileges, running
Mimikatz, and enabling lateral movement via WMIC. A full list of
commands can be found in Table 1.

Figure 2: AlfaShell GUI showing information about victim host (Source: Recorded Future)

Figure 3: AlfaShell GUI showing directory information (Source: Recorded Future)

Command Function
download Download a file from the server

exec_cmd Run a cmd.exe /c command on the server

exec_ps Run a powershell.exe -nop -noni -enc
'base64command' on the server

inject_dll_reflective Inject a reflective DLL in a new (or existing)
process

inject_dll_srdi Inject a generic DLL in a new (or existing)
process

inject_shellcode Inject shellcode in a new (or existing)
process

invoke_ps_module Run a ps1 script on the target server

invoke_ps_module_as Run a ps1 script on the target server as a
specific user

lateral_psexec Run psexec binary to move laterally

lateral_wmi Run builtin WMI command to move laterally

mimikatz Run an offline version of mimikatz directly in
memory

net_portscan Run a port scan using regular sockets, based
(pretty) loosely on nmap

privesc_juicy_potato Launch InMem Juicy Potato attack trying to
impersonate NT AUTHORITY\SYSTEM

privesc_powerup Run Powerup module to assess all
misconfiguration for privesc

runas Run a cmd.exe /c command spawning a new
process as a specific user

runas_ps Run a powershell.exe -enc spawning a new
process as a specific user

upload Upload a file to the server

Table 1: SharPyShell commands (Source: GitHub)

MALWARE/TOOL PROFILE

http://www.recordedfuture.com
https://www.fireeye.com/blog/threat-research/2017/09/apt33-insights-into-iranian-cyber-espionage.html
https://github.com/antonioCoco/SharPyShell
https://github.com/antonioCoco/SharPyShell

www.recordedfuture.com | Recorded Future® MTP-2021-1214 4

KRYPTON

Krypton is a web shell used by Turla operators as an initial
foothold. The web shell is protected, meaning that it will only
function when keys are passed via HTTP(S) request to the web
shell; otherwise, the web shell will not resolve or respond to
commands. Krypton is a C# web shell, but unlike ASPXSPY, Alfa
Team Shell, SharPyShell, and TWOFACE, we did not have access
to the client portion needed to interact with the web shell. After
analyzing the KRYPTON ASP code, Insikt Group developed
a Python script to interact with the Krypton web shell, which
can be downloaded from our GitHub repository. The Krypton
web shell accepts 6 parameters to run commands on the victim
server.

The web shell encodes data in base64 and encrypts it
with AES to conceal its network traffic. The sample tested
by Insikt Group used the key “J8fs4F4rnP7nFl#f” and the IV
“D68gq#5p0(3Ndsk!”. Turla has previously relied on password-
protected web shells to enable intrusion operations, using them
to operate hacked WordPress sites as command and control
infrastructure.

ASPXSpy

ASPXSpy is an open-source web shell written in C# that
allows a threat actor to accomplish various post-exploitation
tasks, including file access and command execution. ASPXSpy
has been used by high-end espionage groups such as APT39,
APT41, and HAFNIUM.

In addition to running commands on the victim host, the web
shell can run SQL queries, extract credentials from the infected
server, identify running processes, and use nmap to scan other
address spaces.

TWOFACE

TWOFACE, also called SEASHARPEE, HighShell, and
HyperShell, is a two-stage web shell originally used by APT34
operators. The web shell had its code leaked by Lab Dookhtegan
and has since been borrowed by UNC215 (with rough links to
APT27) and co-opted by Turla, after Turla took over APT34
infrastructure to support their operations.

The web shell is written in C# and features a password-
protected loader that drops the main web shell component. The
loader component uses an evasion technique that resolves to a
decoy web page if accessed via a web browser; its functionality
is only activated when specific data is passed to the web shell
in an HTTP(S) request. The loader then waits for an HTTP(S)
request containing a salted decryption key in the body to decrypt
and load the payload web shell to a specified location.

Case Command / Parameter

cmd Run a command in cmd.exe

put Upload a file

update Modify content of a file

time Time stomp a file

del Delete a file

get Download a file
Table 2: KRYPTON commands and parameters (Source: Recorded Future)

Figure 4: ASPXSpy user interface (Source: Recorded Future)

MALWARE/TOOL PROFILE

http://www.recordedfuture.com
https://www.microsoft.com/security/blog/2020/02/04/ghost-in-the-shell-investigating-web-shell-attacks/
https://github.com/Insikt-Group/Research/tree/master/Webshells
https://github.com/Insikt-Group/Research/tree/master/Webshells
https://securelist.com/the-epic-turla-operation/65545/
https://github.com/tennc/webshell/blob/master/net-friend/aspx/aspxspy.aspx
https://www.fireeye.com/blog/threat-research/2019/01/apt39-iranian-cyber-espionage-group-focused-on-personal-information.html
https://content.fireeye.com/apt-41/rpt-apt41
https://www.volexity.com/blog/2021/03/02/active-exploitation-of-microsoft-exchange-zero-day-vulnerabilities/
https://www.fireeye.com/blog/threat-research/2021/08/unc215-chinese-espionage-campaign-in-israel.html
https://www.ncsc.gov.uk/news/turla-group-exploits-iran-apt-to-expand-coverage-of-victims
https://www.youtube.com/watch?v=GjquFKa4afU

Recorded Future® | www.recordedfuture.com MTP-2021-12145

The decrypted web shell component, shown in Figure 5, is
password-protected to prevent anyone who may stumble upon
the web shell from issuing commands. Once the password is
provided (and saved in the cookie field), the full functionality of
the web shell is available. The features include file upload and
download, running shell commands in a specified process, the
ability to timestomp files at a given location, and querying a SQL
database. TWOFACE recognizes the following commands:

Full Spectrum Web Shell Detection
Cybersecurity teams, defenders, and security researchers

looking to detect web shells have options for host-based
detection with Sigma, file detection with YARA, network
detections with IDS, and external scanning for anomalous and
suspicious indicators.

The figure below shows a high-level overview of where you
can apply our detections to provide full-spectrum detection of
web shells. Our detections fall into three categories:

• Network: Using network triggers (IDS rules) to identify
authentication or command execution of web shells.

• Host: Using Sigma rules to detect behavior related to
commands being executed from a web shell.

Figure 5: TWOFACE user interface (Source: Recorded Future)

Field Command / Parameter
Do it Login with supplied password

Execute Command execution

Upload Upload file to server. Can also upload file
base64 encoded

Download Download file

Run SQL Server connection and Query

Get/Set Get or Set timestamps

Table 3: TWOFACE commands (Source: Recorded Future)

Figure 6: Full-spectrum web shell detection (Source: Recorded Future)

MALWARE/TOOL PROFILE

http://www.recordedfuture.com
https://attack.mitre.org/techniques/T1070/006/

www.recordedfuture.com | Recorded Future® MTP-2021-1214 6

• Scanning (external or internal): Identifying vulnerable
servers and scanning for common URLs used by web
shells. Performing YARA and pattern-matching searches
on retrieved content to detect web shells.

The more visibility and logging you have in each of these
detection points, the greater the chance you have to detect web
shell activity.

Web shells often are used after initial access is obtained.
Threat actors will move laterally and may deploy additional
tooling to achieve their objective. For this reason, once a web
shell detection has been confirmed, Insikt Group recommends
additional analysis be performed to identify the full scope of the
intrusion, including but not limited to:

• The vector of infection

• The type of web shell used

• Evidence of credential harvesting, data exfiltration, or
lateral movement

Web Shell Activity Emulation

The detections Insikt Group created are based on our
emulation of each web shell in a lab environment and do not
specifically detect all of the ways a web shell could be created or
run on the system. We focused on generating logs based on web
shell use that is common across attackers to build detections. We
focused on the steps identified below that have been regularly
observed in web shell compromises for our detections.

1. Authentication

2. Recon commands

a. whoami

b. ipconfig

c. net user

3. File movement or modification

a. Upload a file

b. Download a file

c. Time stomp

4. Miscellaneous Lateral Movement

a. Mimikatz

b. Read and modify registry

c. Scan a port

Sigma

Insikt Group created Sigma rules for each web shell covered
here by evaluating Sysmon logs (using the SwiftOnSecurity
configuration for Sysmon here) generated during the adversary
emulation process.

For the Windows-based web shells, it was possible to create
Sigma detections using Sysmon logging for the reconnaissance
commands run during the emulation. Most detections were based
on process creation events of “cmd.exe” where the command line
value included the particular command the threat actor would
run — whoami, ipconfig, or net user. While these commands can
also be run by administrators on a Windows system, when the
commands are executed by the web shells, there are unique
artifacts in either the parent process information, the directory
in which the command was executed, or the user executing the
command. For instance, commands issued by ASPXSPY and
TWOFACE run with the current directory value of “c:\windows\
system32\inetsrv\” by default. Additionally, commands executed
from KRYPTON and SharPyShell contain the parent image
“C:\WINDOWS\System32\inetsrv\w3wp.exe” and ASPXSPY,
TWOFACE, KRYPTON and SharPyShell all operate under the
default application pool identity, “IIS APPPOOL\DefaultAppPool“.
Table 4 summarizes the triggers we used to build our Sigma
detections.

Host Triggers

Alfa

• Alfa-specific strings in audited logs:

• Getheader.alfa (Alfa webpage header
update)

• Alfa.zip (File compressor component)

• Symperl.alfa (Symlink creation
component)

ASPXSPY

• Command execution from the directory “C:/
WINDOWS/System32/inetsrv/”

• Default user is “IIS APPPOOL\DefaultAppPool”

KRYPTON

• Parent image is “C:\WINDOWS\System32\
inetsrv\w3wp.exe”

• Default user is “IIS APPPOOL\DefaultAppPool”

SharPyShell

• Parent image is “C:\WINDOWS\System32\
inetsrv\w3wp.exe”

• Default user is “IIS APPPOOL\DefaultAppPool”

TWOFACE

• Command execution from the directory “C:/
WINDOWS/System32/inetsrv/”

• Default user is “IIS APPPOOL\DefaultAppPool”

Table 4: Summary of web shell host triggers used to build Sigma Rules (Source: Recorded Future)

MALWARE/TOOL PROFILE

http://www.recordedfuture.com
https://github.com/SwiftOnSecurity/sysmon-config
https://docs.microsoft.com/en-us/iis/manage/configuring-security/application-pool-identities

Recorded Future® | www.recordedfuture.com MTP-2021-12147

For file transfer and lateral movement, there were no
distinctive Sysmon events that could be used for detection.
In addition, while Mimikatz left artifacts in the Sysmon logs,
they were not unique to a particular web shell. It is only with
SharPyShell that we can detect the loading of modules used for
Mimikatz or port scanning. However, we cannot distinguish what
module is being loaded. Although a Sigma rule for Mimikatz would
be beneficial, there are already several open source detections
currently available.

Traffic Patterns

Many web shells rely on network traffic triggers sent in
plaintext. The most common methods use cookies in the body
of the HTTP request and extensions of the URI string to deliver
commands. Web shells can use HTTP or HTTPS depending on
the configuration of the compromised server; for our analysis,
we did not use HTTPS. The table below provides a summary of
network traffic triggers for each web shell we analyzed.

Additional details for each trigger are provided in the
following sections.

Cookie-Based Communication

After authentication with a password, ASPXSpy installations
use a cookie parameter to validate the user’s interaction with
the shell. The use of a cookie name of ASP.NET_SessionID is
not globally unique, but if such cookies are not used in the client
environment, it can be honed in on for detection. ASPXSPY
Commands can also be delivered in the cookie field.

Additionally, the TWOFACE web shell sends commands in the
cookie field, delineated by vertical slash and pound symbols. The
fields appear in plaintext, while the commands are encoded with
base64. The field names can be found in Figure 3.

The Krypton web shell also uses cookies to transport
commands and data to the web shell. As a part of this
communication process, the HTTP cookie fields are all prepended
with the string “cmd=” followed by a base64 encoded string,
creating a detection opportunity for Krypton traffic.

Alfa Team Shell uses the cookie header to transmit commands
in clear text; the “alfa-terminal-history” name will contain the
command(s) executed in the current session. In the example
shown in Figure 10, it contains the “whoami” command.

We recommend looking in cookie fields for inbound traffic
to identify cookies not assigned by the webserver under normal
operation and for evidence of commands being issued, either
encoded or in plaintext.

Cookies HTTP Body User-Agent

Alfa
Commands
Hunting Tip: Look for the pattern “al-
fa-terminal-history=[<commands>]”

ASPXSPY

Commands
Hunting Tip: Look for HTTP
POSTs with “boundary=” in the
Content-Type header and “Con-
tent-Disposition: form-data” in
the payload

KRYPTON
Commands
Hunting Tip: Look for the patten “cm-
d=<base64blob>”

SharPyShell

Commands
Hunting Tip: Look for HTTP
POSTs with “boundary=” in
the Content-Type header and
“Content-Disposition: form-data;
name=”data’” in the payload

Configuration
Hunting Tip: The User-agent
below, while not unique to
SharPyShell, is hardcoded and
has to be manually changed at
runtime. “Mozilla/5.0 (Windows
NT 6.1; Win64; x64; rv:62.0)”
Gecko/20100101 Firefox/62.0”

TWOFACE
Commands
Hunting Tip: Look for the pattern
“data=pro#=#<base64blob>=#|cm-
d#=<base64blob>”

 Table 5: Summary of web shell network triggers (Source: Recorded Future)

MALWARE/TOOL PROFILE

http://www.recordedfuture.com
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/win_mimikatz_command_line.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/builtin/win_alert_mimikatz_keywords.yml

www.recordedfuture.com | Recorded Future® MTP-2021-1214 8

Figure 7: ASPXSpy HTTP POST request with ASP.NET session ID authentication cookie (Source: Recorded Future)

Figure 8: TWOFACE HTTP POST request with cookie containing blank delimited data fields (Source: Recorded Future)

Figure 9: Krypton web shell shifting cookie values (Source: Recorded Future)

MALWARE/TOOL PROFILE

http://www.recordedfuture.com

Recorded Future® | www.recordedfuture.com MTP-2021-12149

Figure 10: Alfa Team Shell web shell cookie command (Source: Recorded Future)

Figure 11: ASPXSpy HTTP POST request (Source: Recorded Future)

MALWARE/TOOL PROFILE

http://www.recordedfuture.com

www.recordedfuture.com | Recorded Future® MTP-2021-1214 10

HTTP Body-Based Communication

After authentication with a password, ASPXSpy sends
commands in the body of the HTTP POST request, delineated
by a boundary flag.

SharpyShell similarly uses content-disposition and form
boundaries to flag data being passed to the web shell. However,
this data is encrypted with AES before being encoded with
base64.

The China Chopper web shell has been widely used in attacks
by numerous Chinese state-sponsored groups, dating from 2013
to the present day. China Chopper operators pass data to the
web shell in plaintext in the body of the HTTP request.

URI-Based Communication

More common web shells will deliver command and
authentication parameters in the body of the URI, particularly
PHP web shells. While these are not considered the most
sophisticated or stealthy threat, they are very common, and their
detection should be taken seriously.

URI-based patterns can be used to detect web shell traffic
in other ways. For example, a visible pattern for SharPyShell
consists of repeated HTTP POST requests for an .aspx file, as
seen in Figure 14.

Web Shell Scanning and Discovery

Security teams that have adequate visibility into their
host and network activity will succeed in detecting web shells
using a combination of our Sigma rules and our network traffic
indicators. These detections are behavior-based and require
that the appropriate logs be captured, sent to a SIEM, and then
actioned.

Another approach that is less reliant on logging and can be
taken by both internal security teams and security researchers
is scanning endpoints for web shells. This approach varies
depending on whether an internal team is scanning their
infrastructure or a security researcher is scanning for web shells
on an internet-wide scale.

Security Team Scanning

Security teams that lack host or network logging capabilities
may still identify web shells by scanning their web or Exchange
servers. Security teams with host and network logging can also
benefit from this approach as another avenue for detection.

Figure 12: Truncated SharpyShell HTTP POST request body (Source: Recorded Future)

MALWARE/TOOL PROFILE

http://www.recordedfuture.com
https://www.recordedfuture.com/web-shell-analysis-part-2/
https://blog.talosintelligence.com/2019/08/china-chopper-still-active-9-years-later.html
https://sushant747.gitbooks.io/total-oscp-guide/content/webshell.html
https://www.acunetix.com/blog/articles/web-shells-101-using-php-introduction-web-shells-part-2/

Recorded Future® | www.recordedfuture.com MTP-2021-121411

Figure 15: Repetitive POST transmissions of SharPyShell (Source: Recorded Future)

Figure 13: Data being transferred in HTTP body to China Chopper web shell (Source: Crowdstrike)

Figure 14: Example web shell command delivered via URI (Source: PacketTotal)

MALWARE/TOOL PROFILE

http://www.recordedfuture.com
https://www.crowdstrike.com/blog/chopping-packets-decoding-china-chopper-web-shell-traffic-over-ssl/
https://packettotal.com/app/analysis?id=44b9ca56616ed2a2cfc2c59c5d52239f

www.recordedfuture.com | Recorded Future® MTP-2021-1214 12

We have developed a Python script that takes a list of
domains or IPs and scans for web shell indicators. The way the
script works is:

1. For each domain or IP provided, the script will append
common web shell URI paths. This will create a list of
URLs to scan.

2. The script will then perform a HTTP GET request on each
URL to retrieve the content of the webpage.

3. YARA rules are used to identify suspicious web shell
components in the content.

4. Regular expressions used in this repository are used to
identify suspicious web shell components in the content.

5. Results are displayed in the console.

The only requirements are that the security team knows the
IP addresses and domains of their public-facing servers and have
the appropriate rights and permissions to perform the scanning.
This script does not require local access to the servers as we are
interacting with the hosts over HTTPS, similar to how a threat
actor would interact with their web shell.

Performing External Scanning

Security researchers can use the same script as internal
security teams; however, a security team scanning their own
infrastructure is more practical than a security researcher
scanning the whole internet, as the combination of URIs,
domains, and IP addresses makes the number of URLs to scan
unrealistic.

To more broadly scan for web shells, filtering has to be
applied, and at a level where there is minimal quality loss of the
data set being scanned. To do this, we filter on common exploits
involving public-facing applications or servers.

As shown in Figure 16, CVE-2021-33766 appears to be a
relevant vulnerability to target. This query in Shodan can help to
identify hosts and domains that are running Microsoft Exchange.
By downloading the results, additional filtering can be done to
identify hosts with the CVE-2021-33766 vulnerability. Another
filter can be applied based on location, such as United States or
United Kingdom targets. The filtered data set should provide a
more realistic number of hosts for web shell scanning.

Web Shell Scanning YARA

YARA rules were created by Insikt Group to scan the HTTP
responses for the presence of ASPXSPY, TWOFACE and Alfa
Team Shell web shells. These rules are most effective when
run against HTTP responses generated by interacting with a web
shell or by our web shell scanner above and are less effective if
run against static files. The reason is that various web shells will
obfuscate their code statically to avoid detection; however, when
processed through the web server’s scripting engine, they are
deobfuscated. An example of this is shown in the figure below
using the Alfa Team Shell. The left side shows the obfuscated
contents of the file, and the right side shows the HTTP response
containing the deobfuscated code.

Figure 16: Vulnerabilities associated with Microsoft Exchange Servers (Source: Recorded Future)

MALWARE/TOOL PROFILE

http://www.recordedfuture.com
https://github.com/Insikt-Group/Research/tree/master/Webshells
https://github.com/tstillz/webshell-analyzer
https://www.shodan.io/search?query=http.title%3Aoutlook+exchange

Recorded Future® | www.recordedfuture.com MTP-2021-121413

Mitigations
There are many mitigation strategies to detect and prevent

compromises of web servers involving web shells. As always,
security strategies should be based upon specific requirements
of the organization, but the following include some general
concepts to mitigate this threat.

• Least Privilege — Limit privileges on the web server by
controlling permissions for creation and execution of files
in critical directories. By reducing privileges on the web
server, defenders can reduce the attacker’s ability to
escalate privileges locally or move laterally.

• Input Validation — Use input validation to limit the ability
of an attacker to conduct local and remote file inclusion.

• File Integrity/EDR — Use established offline backups to
create “known good” versions of a server, and maintain
a change-management process to monitor system file
changes. Use EDR software to protect web servers.

•	 Logging	— Visibility into what is occurring on the server
is key. Ensure that logging with tools such as Sysmon on
Windows servers or AuditD on Linux is occurring and the
logs are being monitored via a SIEM or other such tool so
that alerting can be appropriately seen and responded
to. Without visibility, it is difficult or impossible to prevent
a web shell attack as it is happening.

• Patching — Keep servers patched to prevent
compromises enabled by known vulnerabilities. Attackers
know that production servers such as web servers may
have a delayed patching schedule. Prioritizing patches
and updates for such devices is critical.

• Traffic Monitoring — Use an intrusion prevention
system (IPS) and web application firewall (WAF), which
may not detect novel attacks but can stop known
attacks.

Many references provide additional guidance on web shell
defense from sources such as the US National Security Agency,
Cybersecurity and Infrastructure Agency, and Microsoft.

Figure 17: Alfa Team Shell obfuscated versus deobfuscated (Source: Recorded Future)

MALWARE/TOOL PROFILE

http://www.recordedfuture.com
https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon
https://github.com/Neo23x0/auditd/blob/master/audit.rules
https://media.defense.gov/2020/Jun/09/2002313081/-1/-1/0/CSI-DETECT-AND-PREVENT-WEB-SHELL-MALWARE-20200422.PDF
https://us-cert.cisa.gov/ncas/alerts/TA15-314A
https://www.microsoft.com/security/blog/2020/02/04/ghost-in-the-shell-investigating-web-shell-attacks/

www.recordedfuture.com | Recorded Future® MTP-2021-1214 14

Outlook
Insikt Group expects threat actors to continue using web

shells as a component of their intrusions, primarily to enable
initial post-compromise actions, persistence, reconnaissance,
or the dropping of additional tools. The 5 web shells evaluated
during this research represent a subset of those that will continue
to be used, and additional variants will likely be developed in the
future. While protecting an organization against the threat of
web shells cannot be done in a completely foolproof manner,
using the detection strategies outlined in this report, along with
regular monitoring of web server logs, patching of vulnerabilities,
and other defensive tactics can help combat the threat.

MALWARE/TOOL PROFILE

http://www.recordedfuture.com

MALWARE/TOOL PROFILE

Recorded Future® | www.recordedfuture.com MTP-2021-121415

About Recorded Future

Recorded Future is the world’s largest provider of intelligence for enterprise
security. By combining persistent and pervasive automated data collection and analytics
with human analysis, Recorded Future delivers intelligence that is timely, accurate,
and actionable. In a world of ever-increasing chaos and uncertainty, Recorded Future
empowers organizations with the visibility they need to identify and detect threats
faster; take proactive action to disrupt adversaries; and protect their people, systems,
and assets, so business can be conducted with confidence. Recorded Future is trusted
by more than 1,000 businesses and government organizations around the world.

Learn more at recordedfuture.com and follow us on Twitter at @RecordedFuture.

http://www.recordedfuture.com

	_xeskci5o0hvk
	_rlvrizacbuxx
	_it3j3h9cqqux
	_io68w25q8d1a
	_dujp0mlziobo
	_jkil7krpbfut
	_h2xzrnsakgm
	_qruytyqyj8j
	_olcyqgp2ft30
	_np3fxrpy97ik
	_f24mg48uwbtv
	_wyg1pahz2it
	_pz8y4enwafk9
	_364dk8hf783n
	_lu7mjbxe1swe
	_j0zo7axp20qb
	_htpdbijevz0m
	_usk2lnkdle9a
	_tlmr0tgosrpi
	_rbvcr0esisls
	_9vm216qcc0fe
	_20z073i5vsre
	_ao4i8yhlz34h

