
May 26, 2022

By Insikt Group®

VULNERABILITY SPOTLIGHT:

Dirty Pipe

CYBER
THREAT
ANALYSIS

Recorded Future® | www.recordedfuture.com CTA-2022-05261

This report provides an overview, technical analysis, and mitigations for
CVE-2022-0847. Sources include the Recorded Future® Platform, GitHub, and
open-source reporting. The intended audience for this report is defenders and
analysts who are interested in how CVE-2022-0847 exploits work, as well as current
mitigations that can be employed.

Executive Summary
CVE-2022-0847 (Dirty Pipe) is a Linux kernel vulnerability

that was disclosed in early March 2022. The vulnerability was
introduced in Linux kernel version 5.8 and allows for local privilege
escalation via arbitrary file overwrites. An example proof-of-
concept (POC) exploit was released with the disclosure, and
since then several other POCs have been published on GitHub.
The public exploits are reliable and only require a small number
of prerequisites to work, such as having read permissions to a
targeted file. Given the nature of this vulnerability, there are
many different files that can be targeted for privilege escalation;
therefore, this report highlights the techniques used by existing
POC exploits. CVE-2022-0847 was patched in Linux kernel
versions 5.16.11, 5.15.25, and 5.10.102, and all major Linux-based
distributions have incorporated patches into their package
repositories. Organizations should apply the recommended
patches as soon as possible.

Key Observations
• CVE-2022-0847 existed in the wild for roughly 2 years,
although there is no evidence that it was exploited prior
to its public disclosure.

• Multiple POC exploits are publicly available, making
this vulnerability easy to exploit and accessible to
unsophisticated attackers.

• Exploits for CVE-2022-0847 are reliable and allow an
attacker to gain root access when run on a vulnerable
system. The root access enables the threat actor to
perform administrative tasks such as reading sensitive
files, installing malicious software, impersonating users,
and potentially moving laterally throughout the network.

• The only mitigation for CVE-2022-0847 is to apply
security patches, which are available for all major Linux
distributions.

• Recorded Future has observed over 90 underground
forum references to CVE-2022-0847 since it was
disclosed, illustrating a general interest and potential
intent to exploit the vulnerability in future campaigns.

Background
CVE-2022-0847 is a privilege escalation vulnerability in

the Linux kernel that allows arbitrary files to be overwritten if
the attacker has read access to the file. The vulnerability was
introduced into the Linux kernel in version 5.8 and existed for
roughly 2 years before being discovered and patched. It was
discovered by Max Kellermann, who gave it the nickname “Dirty
Pipe” due to its similarities with CVE-2016-5195 (aka “Dirty
Cow”). Kellermann identified the vulnerability on February 19,
2022, and initiated a coordinated vulnerability disclosure the
following day by submitting a bug report, POC exploit, and patch
to the Linux kernel security team. Once patches were in place,
the vulnerability was publicly disclosed on March 7, 2022. At this
time, there is no evidence that CVE-2022-0847 was exploited in
the wild prior to its disclosure.

The bug itself is rated high (7.8) on the CVSS 3.0 scale. Given
the widespread nature of Linux-based operating systems (OS),
the vulnerability affects many devices other than just desktops
and servers running Linux-based OSes. Vulnerable devices
include a wide range of internet of things (IoT) devices, routers,
and Android tablets and phones. It is not possible to remotely
exploit the vulnerability; however, it could be chained with a
remote code execution (RCE) vulnerability to be used without
local access. Additionally, not all devices will be vulnerable as
Linux kernel versions prior to 5.8 are not affected, as well as any
kernel versions that have been updated to the patched versions.

In a search of underground and dark web sources, we
identified numerous discussions pertaining to CVE-2022-0847.
While it is uncommon for threat actors to publicly disclose their
intentions of targeting specific organizations using a particular
CVE, a general interest shared by dark web forum members
indicates threat actors’ intent to use CVE-2022-0847 in malicious
campaigns. We identified 120 references to CVE-2022-0847
across multiple dark web forums over the past 2 months, as
shown in Figure 1 below.

CYBER THREAT ANALYSIS

http://www.recordedfuture.com

www.recordedfuture.com | Recorded Future® CTA-2022-0526 2

Figure 1: References for CVE-2022-0847 or Dirty Pipe on dark web forums
(Source: Recorded Future)

Technical Analysis
The Dirty Pipe vulnerability relies on the way memory

is managed in the Linux kernel. When it comes to memory
management, the smallest unit of memory managed by the
kernel is a page, which is typically 4 KB. When memory is needed
by a process, pages are allocated by the kernel based on the
size of the memory requested. For example, when a process
reads a file from disk, the kernel performs an I/O operation to
read the contents of the file into one or more pages (depending
on the file size) and stores them in a subsystem known as the
page cache. From there, the data can be copied into a process’s
memory for use. As the name implies, pages remain in the page
cache until they are needed again or the kernel reclaims their
memory; this efficiency allows the kernel to potentially avoid
repeating expensive disk I/O operations. In addition to caching
data that is read, the page cache also stores data that is ready
to be written to a file. When a page has been updated in memory
but the change is not reflected in the underlying physical media,
it is said to be “dirty”; hence the name Dirty Pipe.

In Linux, a pipe is used for unidirectional interprocess
communication. One common use case for a pipe is to pass
output from one command to another on the command line using
the | symbol. For example, the following command takes the
output from the ip command and provides it as input to the grep
command so the lines containing “inet” can be filtered out. The
pipe symbol essentially wires the ip command’s stdout output
stream to the grep command’s stdin input stream.

$ ip addr show | grep inet

Figure 2: Example pipe command (Source: Recorded Future)

Linux supports named pipes, also known as First In First
Out (FIFO). The only difference between named pipes and the
aforementioned “unnamed pipe” is how they are created. A
named pipe is created using the mkfifo command and exists on
the filesystem as a file that can be written to or read from. As
with all pipes, data is read from the pipe in the same order that
it was written.

In the kernel, a pipe is represented by the pipe_inode_info
structure. This structure stores pipe data in a circular array
of pipe_buffer structures. Among other data, the pipe_buffer
structure stores a pointer to a page that contains the buffered
data as well as flags to describe the buffer’s characteristics.

The Vulnerability

The initial bug that preceded CVE-2022-0847 was
introduced into the Linux kernel in 2016 with commit 241699cd7,
which added 2 functions that create page_buffer structs but do
not initialize their flags. At the time, this was not an issue as it
was not exploitable; however, in mid-2020 commit f6dd97558
introduced a new flag for pipe buffers known as PIPE_BUF_FLAG_
CAN_MERGE that is used to indicate when a page is allowed to
be written back to its original source file. Combining this new
flag with the original bug from 2016, a pipe created in a specific
manner could now write data back to a page located in the page
cache, regardless of the permissions on the original file. To
better understand the vulnerability, we can analyze Kellermann’s
original POC exploit code. Figure 3 shows an abbreviated version
of the main function for the POC. It begins by opening the target
file in read-only mode.

CYBER THREAT ANALYSIS

http://www.recordedfuture.com
https://linux.die.net/man/3/mkfifo
https://www.kernel.org/doc/htmldocs/filesystems/API-struct-pipe-inode-info.html
https://www.kernel.org/doc/htmldocs/filesystems/API-struct-pipe-buffer.html
https://github.com/torvalds/linux/commit/241699cd72a8489c9446ae3910ddd243e9b9061b
https://github.com/torvalds/linux/commit/f6dd975583bd8ce088400648fd9819e4691c8958

Recorded Future® | www.recordedfuture.com CTA-2022-05263

/* open the input file and validate the specified offset */
 const int fd = open(path, O_RDONLY); // yes, read-
only! :-)

 [...]

 prepare_pipe(p);

 /* splice one byte from before the specified offset
into the
 pipe; this will add a reference to the page
cache, but
 since copy_page_to_iter_pipe() does not
initialize the
 “flags”, PIPE_BUF_FLAG_CAN_MERGE is still set */
 --offset;
 ssize_t nbytes = splice(fd, &offset, p[1], NULL,
1, 0);

 [...]

 /* the following write will not create a new pipe_
buffer, but
 will instead write into the page cache, because
of the
 PIPE_BUF_FLAG_CAN_MERGE flag */
 nbytes = write(p[1], data, data_size);

Figure 3: Abbreviated main function for Kellermann’s POC exploit

Next, the prepare_pipe function (shown in detail in Figure 4
below) is called. This function sets the PIPE_BUF_FLAG_CAN_
MERGE flag on each of the pipe’s pipe_buffer structures by
completely filling the pipe with data. Then, it drains the pipe to
empty out the data while leaving the flags intact.

/**
 * Create a pipe where all “bufs” on the pipe_inode_info
ring have the
 * PIPE_BUF_FLAG_CAN_MERGE flag set.
 */
static void prepare_pipe(int p[2])
{
 if (pipe(p)) abort();

 const unsigned pipe_size = fcntl(p[1], F_GETPIPE_
SZ);
 static char buffer[4096];

 /* fill the pipe completely; each pipe_buffer will
now have
 the PIPE_BUF_FLAG_CAN_MERGE flag */
 for (unsigned r = pipe_size; r > 0;) {
 unsigned n = r > sizeof(buffer) ?
sizeof(buffer) : r;
 write(p[1], buffer, n);
 r -= n;
 }

 /* drain the pipe, freeing all pipe_buffer
instances (but
 leaving the flags initialized) */
 for (unsigned r = pipe_size; r > 0;) {
 unsigned n = r > sizeof(buffer) ?
sizeof(buffer) : r;
 read(p[0], buffer, n);
 r -= n;
 }

 /* the pipe is now empty, and if somebody adds a
new
 pipe_buffer without initializing its “flags”,
the buffer
 will be mergeable */
}

Figure 4: POC exploit to set the PIPE_BUF_FLAG_CAN_MERGE flag on a pipe’s buffer
(Source: Max Kellermann)

After preparing the pipe, a splice system call is made to write
1 byte from the file into the pipe. This call is required because it
allows the file to be read into a page stored in the page cache and
then copies a reference to the page cache into the pipe’s buffer.
The underlying function that performs the copy fails to properly
initialize the flags, thus leaving the PIPE_BUF_CAN_MERGE flag
set. Subsequent writes to the pipe are then written back into the
page cache, allowing the file contents to be overwritten even
though it was opened in a read-only manner.

When exploited, this vulnerability permits writing to files
that would normally not be writable even by a root user, such
as btrfs snapshots, read-only mounts (for example, CD-ROMs),
and immutable files. This is possible because of the non-
conventional way the writes are being performed by the kernel
via the page cache, and pipes do not check for permissions.
As a result, attackers can exploit Dirty Pipe to gain root access
in non-traditional environments that are mounted in read-only
mode, such as mobile and IoT device file systems.

CYBER THREAT ANALYSIS

http://www.recordedfuture.com
https://man7.org/linux/man-pages/man2/splice.2.html
https://btrfs.wiki.kernel.org/index.php/Main_Page

www.recordedfuture.com | Recorded Future® CTA-2022-0526 4

The only requirements for successful exploitation of the
vulnerability are:

• The attacker must have read-only data to the file they
wish to modify. This is because the file must be read into
a page so that it can later be spliced into the pipe.

• The data written into the file cannot start on a page
boundary, otherwise a reference to the page cache
would not be copied into the pipe’s buffer.

• The data written cannot cross page boundaries because
this would create a new page rather than overwriting the
page in the page cache.

• The file cannot be resized because the pipe is unable to
tell the page cache how much data was appended.

In practice, these limitations provide numerous avenues for
threat actors to gain escalated privileges. Unprivileged users
have read access permissions to a number of sensitive files on
a file system for legitimate reasons, such as the /etc/passwd
file and SUID binaries. Furthermore, the restrictions on page
boundary writing and size are also easy to circumvent as the
injected content does not need to be large for an exploit to be
effective. In the following section, we highlight some of the
techniques observed in existing publicly available POC exploits
for Dirty Pipe.

Figure 5: Running SUID binary POC, showing shell running with root privileges, created /tmp/sh file with SUID bit, and restored functionality of overwritten SUID binary
(Source: Recorded Future)

CYBER THREAT ANALYSIS

http://www.recordedfuture.com

Recorded Future® | www.recordedfuture.com CTA-2022-05265

POC Exploit Techniques

Several POC exploits have been released since the
vulnerability was publicly disclosed. Each is based on Kellermann’s
original POC code, but they take different approaches in how
they escalate privileges. While there are many possible ways to
abuse CVE-2022-0847, we have observed 3 common techniques
in POC exploits:

1. Targeting the /etc/passwd file to include a new user,
mapped to uid 0 (that is, root), with a known password
hash. This is a viable method because most systems
will still check the /etc/passwd file when authenticating
a user, despite modern systems placing their password
hashes in /etc/shadow.

2. Overwriting a SUID binary, such as ping, with a custom
executable instead. The purpose of a SUID binary is to
allow non-privileged users to perform privileged actions,
such as generating packets with the ping command.
The SUID bit can be set via the chmod command to
allow a binary to run with the permissions of the file’s
owner, which in most cases is root. Overwriting one of
these files with a custom binary allows an attacker to
effectively escalate their privileges to that of the original
file’s owner. In this example POC, the target binary is
overwritten with a small ELF program that drops another
ELF program to /tmp/sh, setting the SUID bit and the
owner as root. The exploit then runs the newly created
file /tmp/sh, which sets the UID and GID to 0 (root) and
then executes /bin/sh to launch an interactive shell.
Once in the shell, the attacker has root access to the
system. The exploit restores the original content of the
overwritten binary and advises the attacker to manually
remove the temporary ELF file created as /tmp/sh.

3. In Kellermann’s original POC exploit, he left a comment
showing how to use the exploit to add a new entry to
the root user’s authorized_keys file. The authorized_keys
file contains a list of public keys that are able to log in
as the user (in this case root) provided they have the
corresponding private key. Adding a new entry to the
authorized_keys file allows an attacker to SSH into the
victim machine as the root user with their own private
key, bypassing any password prompts and providing
them with root access to the system. In practice this
vector is unlikely to work, as an unprivileged user does
not have read access to the root user’s authorized_keys
file by default.

Mitigations
The only viable mitigation for CVE-2022-0847 is to upgrade

to a newer version of the Linux kernel. The vulnerability has
been patched in kernel versions 5.16.11, 5.15.25, and 5.10.102,
and updates are available in all major distributions via their
respective package managers. Organizations should check the
kernel version of their Linux systems and patch accordingly.

To determine the kernel version a Linux installation is using,
the uname -r command can be run in a terminal. Additionally, a
shell script is available here to automatically perform a version
check against a specific system (or version of the kernel) to
determine whether it is vulnerable.

Android and IoT devices are more complicated to patch due
to their reliance on device manufacturers for firmware updates.
Android users can check their kernel versions by going to
Settings -> About Phone -> Android/Software Version -> Kernel
Version. Affected users are encouraged to reach out to their
device manufacturer for update information. Similarly, due to the
nature of IoT devices, it is impossible to provide generic advice
for determining if, and what version of, the Linux kernel is being
used. Therefore, the device manufacturer should be consulted
to determine whether a particular IoT device is vulnerable and
the availability of firmware updates.

CYBER THREAT ANALYSIS

http://www.recordedfuture.com
https://github.com/AlexisAhmed/CVE-2022-0847-DirtyPipe-Exploits/blob/main/exploit-1.c
https://github.com/AlexisAhmed/CVE-2022-0847-DirtyPipe-Exploits/blob/main/exploit-2.c
https://dirtypipe.cm4all.com/
https://github.com/basharkey/cve-2022-0847-dirty-pipe-checker

www.recordedfuture.com | Recorded Future® CTA-2022-0526 6

Outlook
CVE-2022-0847 is an easy and reliable vulnerability that is

exploitable on any of the unpatched affected kernel versions.
Many POC exploits are publicly available and accessible to
unsophisticated threat actors who may otherwise not possess
the skill to create an exploit themselves. An attacker exploiting
Dirty Pipe on an OS running a vulnerable kernel version will gain
root privileges. The root privileges allow the attacker to perform
actions on their objectives, such as reading sensitive files,
installing malicious software, impersonating users, or potentially
moving laterally throughout the network. Organizations running
affected versions of the Linux kernel are highly encouraged to
follow the steps outlined in the mitigations section and upgrade
their systems as soon as possible.

CYBER THREAT ANALYSIS

http://www.recordedfuture.com

CYBER THREAT ANALYSIS

Recorded Future® | www.recordedfuture.com CTA-2022-05267

About Recorded Future®

Recorded Future is the world’s largest intelligence company. Recorded Future’s
cloud-based Intelligence Platform provides the most complete coverage across
adversaries, infrastructure, and targets. By combining persistent and pervasive
automated data collection and analytics with human analysis, Recorded Future provides
real-time visibility into the vast digital landscape and empowers clients to take proactive
action to disrupt adversaries and keep their people, systems, and infrastructure safe.
Headquartered in Boston with offices and employees around the world, Recorded
Future works with more than 1,400 businesses and government organizations across
more than 60 countries.

Learn more at recordedfuture.com and follow us on Twitter at @RecordedFuture.

About Insikt Group®

Insikt Group is Recorded Future’s threat research division, comprising analysts and
security researchers with deep government, law enforcement, military, and intelligence
agency experience. Their mission is to produce intelligence on a range of cyber and
geopolitical threats that reduces risk for clients, enables tangible outcomes, and prevents
business disruption. Coverage areas include research on state-sponsored threat groups;
financially-motivated threat actors on the darknet and criminal underground; newly
emerging malware and attacker infrastructure; strategic geopolitics; and influence
operations.

http://www.recordedfuture.com

	_xeskci5o0hvk
	_rlvrizacbuxx
	_76fx07tjoz9i
	_59imetc15470
	_4os1ejidwfas
	_zg2h0ou9sxom
	_omducoyrg5wr
	_dm45q373opev
	_yb78e16666fg

